Backend Python Expert
About
This Claude Skill provides comprehensive Python backend development expertise, focusing on FastAPI, asynchronous programming, and performance optimization. It offers practical guidance for building modern web APIs, writing efficient non-blocking code, and improving execution efficiency. Developers should use it when working on microservices, high-concurrency systems, or I/O-intensive applications needing production-ready patterns.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/Backend Python ExpertCopy and paste this command in Claude Code to install this skill
Documentation
Backend Python Skills
提供 Python 后端开发的全栈能力支持。
包含的技能模块
1. FastAPI 模板 (FastAPI Templates)
- 核心价值: 快速构建高性能的现代 Web API。
- 关键技术: Pydantic 验证, 依赖注入, OpenAPI 文档.
- 使用场景: 微服务开发、API 网关构建。
2. Python 性能优化 (Performance)
- 核心价值: 提升 Python 代码的执行效率。
- 关键技术: Profiling, 多进程/多线程, 算法优化.
- 使用场景: 计算密集型任务、高并发服务。
3. 异步 Python 模式 (Async Patterns)
- 核心价值: 掌握 asyncio,编写高效的非阻塞代码。
- 关键技术: async/await, 协程管理, 异步 I/O.
- 使用场景: I/O 密集型服务、实时通信。
4. Python 测试模式 (Testing)
- 核心价值: 建立稳固的自动化测试体系。
- 关键技术: Pytest, Mocking, Fixtures.
- 使用场景: 单元测试、集成测试编写。
如何使用
- API 开发: "请使用 FastAPI 模板帮我创建一个用户注册接口。"
- 并发优化: "请参考异步 Python 模式,帮我优化这个爬虫脚本。"
交互式开发 (Interactive Development)
在设计架构或重构代码时,如果不确定用户的具体偏好(如框架选择、同步/异步决策),请使用 mcp-feedback-enhanced (e.g., ask_followup_question) 主动询问。如果该工具不可用,则通过对话直接询问。
GitHub Repository
Related Skills
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
cloudflare-turnstile
MetaThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
