data-transformers
About
This skill provides centralized transformation logic for consistent data shaping across API routes. It includes reusable functions like aggregators, rankers, trend calculators, and data sanitizers. Use it when data transformation is scattered across routes and you need testable, consistent output formats.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/data-transformersCopy and paste this command in Claude Code to install this skill
Documentation
Data Transformers
Centralized transformation logic for consistent data shaping across API routes.
When to Use This Skill
- Data transformation is scattered across routes
- Need consistent output formats across endpoints
- Want testable, reusable transformation functions
- Building dashboards with aggregated data
Core Concepts
Centralize all transformation logic in one place:
- Aggregators (category totals, counts)
- Rankers (top-N by score)
- Trend calculators (comparing periods)
- Sanitizers (validate and clean data)
┌─────────────┐ ┌──────────────┐ ┌─────────────┐
│ Raw Data │────▶│ Transformers │────▶│ API Output │
└─────────────┘ └──────────────┘ └─────────────┘
Implementation
TypeScript
// lib/transformers.ts
// ============================================
// Category Aggregation
// ============================================
interface CategoryTotals {
[category: string]: number;
}
function aggregateCategories(
items: Array<{ category: string; count?: number }>
): CategoryTotals {
const totals: CategoryTotals = {};
for (const item of items) {
const category = item.category?.toUpperCase() || 'OTHER';
totals[category] = (totals[category] || 0) + (item.count ?? 1);
}
return totals;
}
function categoriesToBreakdown(
totals: CategoryTotals,
previousTotals?: CategoryTotals
): Array<{ category: string; count: number; percentage: number; trend: string }> {
const total = Object.values(totals).reduce((sum, count) => sum + count, 0);
return Object.entries(totals)
.map(([category, count]) => {
let trend: 'increasing' | 'stable' | 'decreasing' = 'stable';
if (previousTotals) {
const prevCount = previousTotals[category] ?? 0;
const change = count - prevCount;
if (change > prevCount * 0.1) trend = 'increasing';
else if (change < -prevCount * 0.1) trend = 'decreasing';
}
return {
category,
count,
percentage: total > 0 ? count / total : 0,
trend,
};
})
.sort((a, b) => b.count - a.count);
}
// ============================================
// Ranking
// ============================================
interface Rankable {
score: number;
count: number;
}
function rankItems<T extends Rankable>(
items: T[],
limit = 5
): (T & { rank: number })[] {
return items
.sort((a, b) => {
if (b.score !== a.score) return b.score - a.score;
return b.count - a.count;
})
.slice(0, limit)
.map((item, index) => ({ ...item, rank: index + 1 }));
}
// ============================================
// Trend Calculation
// ============================================
type SimpleTrend = 'increasing' | 'stable' | 'decreasing';
function calculateTrend(current: number, previous: number): SimpleTrend {
if (previous === 0) return 'stable';
const change = (current - previous) / previous;
if (change > 0.1) return 'increasing';
if (change < -0.1) return 'decreasing';
return 'stable';
}
function calculateRollingAverage(values: number[], window = 7): number {
if (values.length === 0) return 0;
const slice = values.slice(-window);
return slice.reduce((sum, v) => sum + v, 0) / slice.length;
}
function calculatePercentChange(current: number, previous: number): number {
if (previous === 0) return current > 0 ? 100 : 0;
return ((current - previous) / previous) * 100;
}
// ============================================
// Data Sanitization
// ============================================
interface Hotspot {
country: string;
countryCode: string;
lat: number;
lon: number;
riskScore: number;
eventCount: number;
}
function sanitizeHotspot(raw: Partial<Hotspot>): Hotspot | null {
if (!raw.country || !raw.countryCode) return null;
return {
country: raw.country,
countryCode: raw.countryCode,
lat: raw.lat ?? 0,
lon: raw.lon ?? 0,
riskScore: Math.min(100, Math.max(0, raw.riskScore ?? 0)),
eventCount: Math.max(0, raw.eventCount ?? 0),
};
}
function filterValidHotspots(hotspots: Partial<Hotspot>[]): Hotspot[] {
return hotspots
.map(sanitizeHotspot)
.filter((h): h is Hotspot => h !== null);
}
// ============================================
// String Utilities
// ============================================
function truncate(str: string, maxLen: number): string {
if (!str) return '';
return str.length > maxLen ? str.slice(0, maxLen - 3) + '...' : str;
}
function slugify(str: string): string {
return str
.toLowerCase()
.replace(/[^\w\s-]/g, '')
.replace(/\s+/g, '-')
.replace(/-+/g, '-')
.trim();
}
// ============================================
// Date Utilities
// ============================================
function formatRelativeTime(date: Date): string {
const now = new Date();
const diffMs = now.getTime() - date.getTime();
const diffMins = Math.floor(diffMs / 60000);
const diffHours = Math.floor(diffMs / 3600000);
const diffDays = Math.floor(diffMs / 86400000);
if (diffMins < 1) return 'just now';
if (diffMins < 60) return `${diffMins}m ago`;
if (diffHours < 24) return `${diffHours}h ago`;
if (diffDays < 7) return `${diffDays}d ago`;
return date.toLocaleDateString();
}
export {
aggregateCategories,
categoriesToBreakdown,
rankItems,
calculateTrend,
calculateRollingAverage,
calculatePercentChange,
sanitizeHotspot,
filterValidHotspots,
truncate,
slugify,
formatRelativeTime,
};
Usage Examples
API Route
// api/dashboard/route.ts
import {
aggregateCategories,
rankItems,
filterValidHotspots
} from '@/lib/transformers';
export async function GET() {
const rawData = await fetchFromDatabase();
return Response.json({
categories: aggregateCategories(rawData.predictions),
topHotspots: rankItems(filterValidHotspots(rawData.hotspots), 5),
trend: calculateTrend(rawData.todayCount, rawData.yesterdayCount),
});
}
Dashboard Component
const breakdown = categoriesToBreakdown(
currentTotals,
previousTotals
);
// Returns:
// [
// { category: 'MILITARY', count: 150, percentage: 0.45, trend: 'increasing' },
// { category: 'POLITICAL', count: 100, percentage: 0.30, trend: 'stable' },
// ...
// ]
Best Practices
- One file for all transformers - easy to find and test
- Pure functions - no side effects, predictable output
- Handle edge cases - empty arrays, missing fields, null values
- Type safety - use TypeScript generics where appropriate
- Export from types package - share across frontend and backend
Common Mistakes
- Scattering transformation logic across routes
- Not handling edge cases (empty arrays, null values)
- Mutating input data instead of returning new objects
- Missing type guards for nullable returns
- Not testing transformers in isolation
Related Patterns
- api-client - Use transformers in API responses
- validation-quarantine - Validate before transforming
- snapshot-aggregation - Aggregate data for dashboards
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
