Back to Skills

context-manager

majiayu000
Updated Today
1 views
58
9
58
View on GitHub
Designaidesigndata

About

The context-manager skill provides expertise in designing and optimizing AI memory systems, including RAG architectures and conversation history management. It helps developers efficiently manage context windows, implement long-term memory, and reduce token usage. Use this skill when building or refining AI agent memory, optimizing context utilization, or implementing persistent multi-session systems.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/context-manager

Copy and paste this command in Claude Code to install this skill

Documentation

Context Manager

Purpose

Provides expertise in AI context management, memory architectures, and context window optimization. Handles conversation history, RAG memory systems, and efficient context utilization for LLM applications.

When to Use

  • Designing AI memory and context systems
  • Optimizing context window usage
  • Implementing conversation history management
  • Building long-term memory for AI agents
  • Managing RAG retrieval context
  • Reducing token usage while preserving quality
  • Designing multi-session memory persistence

Quick Start

Invoke this skill when:

  • Designing AI memory and context systems
  • Optimizing context window usage
  • Implementing conversation history management
  • Building long-term memory for AI agents
  • Reducing token usage while preserving quality

Do NOT invoke when:

  • Building full RAG pipelines (use ai-engineer)
  • Managing vector databases (use data-engineer)
  • Coordinating multiple agents (use agent-organizer)
  • Training embedding models (use ml-engineer)

Decision Framework

Memory Type Selection:
├── Single conversation → Sliding window context
├── Multi-session user → Persistent memory store
├── Knowledge-heavy → RAG with vector DB
├── Task-oriented → Working memory + tool results
└── Long-running agent
    ├── Episodic memory → Event summaries
    ├── Semantic memory → Knowledge graph
    └── Procedural memory → Learned patterns

Core Workflows

1. Context Window Optimization

  1. Measure current token usage
  2. Identify redundant or verbose content
  3. Implement summarization for old messages
  4. Prioritize recent and relevant context
  5. Use compression techniques
  6. Monitor quality vs. token tradeoff

2. Conversation Memory Design

  1. Define memory retention requirements
  2. Choose storage strategy (in-memory, DB)
  3. Implement message windowing
  4. Add summarization for overflow
  5. Design retrieval for relevant history
  6. Handle session boundaries

3. Long-term Memory Implementation

  1. Define memory types needed
  2. Design memory storage schema
  3. Implement memory write triggers
  4. Build retrieval mechanisms
  5. Add memory consolidation
  6. Implement forgetting policies

Best Practices

  • Summarize old context rather than truncating
  • Use semantic search for relevant history retrieval
  • Separate system instructions from conversation
  • Cache frequently accessed context
  • Monitor context utilization metrics
  • Implement graceful degradation at limits

Anti-Patterns

Anti-PatternProblemCorrect Approach
Full history alwaysExceeds context limitsSliding window + summaries
No summarizationLost important contextSummarize before eviction
Equal priorityWastes tokens on irrelevantWeight recent/relevant higher
No persistenceLost memory across sessionsStore important memories
Ignoring token costsExpensive API callsMonitor and optimize usage

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/context-manager-skill

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill