Back to Skills

conversational-ai-flow

majiayu000
Updated Yesterday
58
9
58
View on GitHub
Designaidesign

About

This Claude Skill provides expertise in designing and implementing conversational AI systems. It helps developers with chatbot flows, dialog design, NLU intents, and conversation state management. Use it for building robust conversational interfaces with proper architecture patterns and context handling.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/conversational-ai-flow

Copy and paste this command in Claude Code to install this skill

Documentation

Conversational AI Flow Expert

Эксперт по проектированию и реализации потоков разговорного ИИ.

Основные принципы дизайна

Управление состоянием

class ConversationState:
    def __init__(self):
        self.current_intent = None
        self.entities = {}
        self.conversation_history = []
        self.flow_position = "start"
        self.confidence_threshold = 0.7

    def update_context(self, user_input, intent, entities):
        self.conversation_history.append({
            "user_input": user_input,
            "intent": intent,
            "entities": entities
        })
        self.entities.update(entities)
        self.current_intent = intent

Паттерны архитектуры потоков

Маршрутизация на основе намерений

flows:
  booking_flow:
    entry_conditions:
      - intent: "book_appointment"
    steps:
      - name: "collect_datetime"
        prompt: "When would you like to schedule?"
        validation: "datetime_validator"
      - name: "confirm_booking"
        prompt: "Confirm booking on {datetime}?"
        actions: ["create_booking", "send_confirmation"]

  fallback_flow:
    triggers: ["low_confidence", "unknown_intent"]
    strategy: "clarification_questions"

Паттерн заполнения слотов

def slot_filling_handler(state, required_slots):
    missing_slots = [s for s in required_slots if s not in state.entities]

    if missing_slots:
        return generate_slot_prompt(missing_slots[0], state)

    return proceed_to_next_step(state)

Обработка ошибок и восстановление

Прогрессивное раскрытие

class ErrorRecovery:
    def handle_misunderstanding(self, state, attempt_count):
        strategies = {
            1: "I didn't quite catch that. Could you rephrase?",
            2: "Let me try differently. Are you looking to: [options]?",
            3: "Let me connect you with a human agent."
        }
        return strategies.get(attempt_count, strategies[3])

Генерация ответов

Контекстуальные шаблоны

class ResponseGenerator:
    templates = {
        "confirmation": [
            "Got it! {summary}. Is that correct?",
            "Let me confirm: {summary}. Does this look right?"
        ],
        "progress": [
            "Great! We've got {completed}. Next, {next_step}.",
            "Perfect! Just need {remaining} and we're done."
        ]
    }

Мультимодальные ответы

{
  "response_type": "rich",
  "text": "Here are your options:",
  "components": [
    {
      "type": "quick_replies",
      "options": [
        {"title": "Schedule Appointment", "payload": "intent:book"},
        {"title": "Check Status", "payload": "intent:status"}
      ]
    }
  ]
}

Аналитика и оптимизация

def track_flow_metrics(conversation_id, metrics):
    return {
        "completion_rate": metrics.completed / metrics.started,
        "average_turns": metrics.total_turns / metrics.conversations,
        "fallback_rate": metrics.fallbacks / metrics.total_turns,
        "abandonment_points": identify_drop_off_points(conversation_id)
    }

Лучшие практики

  • Определите четкую личность и тон бота
  • Предвосхищайте потребности пользователей
  • Используйте резюме для длинных диалогов
  • Тестируйте все пути и edge cases
  • Мониторьте реальные разговоры для улучшения

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/conversational-ai-flow

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill