slash-command-encoder
About
The slash-command-encoder creates fast, scriptable `/command` interfaces for accessing micro-skills, cascades, and agents. It automatically discovers skills and provides intelligent routing, parameter validation, and command chaining. Use this skill when you need efficient, unambiguous access for repeated operations over conversational interfaces.
Documentation
Slash Command Encoder (Enhanced)
Overview
Creates fast, scriptable /command interfaces for micro-skills, cascades, and agents. This enhanced version includes automatic skill discovery, intelligent command generation, parameter validation, multi-model routing, and command chaining patterns.
Philosophy: Expert Efficiency
Command Line UX for AI: Expert users benefit from fast, precise, scriptable interfaces over natural language when performing repeated operations.
Enhanced Capabilities:
- Auto-Discovery: Scans and catalogs all installed skills automatically
- Intelligent Routing: Commands invoke optimal AI/agent for task
- Parameter Validation: Type-checked, auto-completed parameters
- Command Chaining: Compose commands into pipelines
- Multi-Model Integration: Direct access to Gemini/Codex via commands
Key Principles:
- Fast and unambiguous invocation
- Self-documenting through naming
- Composable and scriptable
- Type-safe parameter handling
- Muscle memory for power users
When to Create Slash Commands
✅ Perfect For:
- Operations performed repeatedly (daily/weekly)
- Workflows that need exact parameters
- Tasks requiring scriptable automation
- Commands that compose into pipelines
- Expert user shortcuts
❌ Don't Use For:
- One-off exploratory tasks
- Operations needing natural language nuance
- Tasks better suited to interactive dialogue
Enhanced Creation Workflow
Step 1: Auto-Discovery Phase
Scan Installed Skills:
# Discovery algorithm
scan_directories:
- ~/.claude/skills/*/SKILL.md
- .claude/skills/*/SKILL.md
extract_metadata:
- name (command base)
- description (help text)
- inputs (parameters)
- outputs (return types)
- integration_points (routing)
Catalog Generation:
discovered_skills:
micro_skills: [extract-data, validate-api, refactor-code, ...]
cascades: [audit-pipeline, code-quality-swarm, ...]
agents: [root-cause-analyzer, code-reviewer, ...]
multi_model: [gemini-megacontext, codex-auto, ...]
Step 2: Command Design (Enhanced)
A. Naming Conventions
Category Prefixes:
# Data operations
/extract-json, /validate-csv, /transform-xml
# Code operations
/lint-python, /test-coverage, /refactor-imports
# Agent invocation
/agent-rca, /agent-reviewer, /agent-architect
# Multi-model
/gemini-search, /codex-auto, /claude-reason
# Workflows
/audit-pipeline, /deploy-prod, /quality-check
Naming Rules:
- Verb-noun pattern:
/validate-api,/extract-data - Agent prefix:
/agent-<specialty> - Model prefix:
/gemini-*,/codex-* - Workflow descriptive:
/audit-pipeline - Max 3 words, hyphenated
B. Parameter Design
Parameter Types:
positional:
- file_path (required, validated)
- target (required, validated)
flags:
--strict: boolean
--format: enum[json, csv, xml]
--output: file_path
options:
--config: json_object
--schema: file_path
--model: enum[claude, gemini, codex]
Validation Schema:
interface CommandParameter {
name: string
type: 'string' | 'number' | 'boolean' | 'file_path' | 'enum'
required: boolean
default?: any
validation?: RegExp | ((value: any) => boolean)
description: string
completion?: () => string[] // Auto-complete options
}
C. Multi-Model Routing
Model Selection Flags:
# Explicit model selection
/analyze src/ --model gemini-megacontext # Large context
/prototype feature.spec --model codex-auto # Rapid prototyping
/reason bug-report.md --model codex-reasoning # Alternative view
/review code.js --model claude # Best reasoning (default)
# Auto-select based on task
/analyze-large-codebase # Auto-routes to gemini-megacontext
/rapid-prototype # Auto-routes to codex-auto
/search-current-info # Auto-routes to gemini-search
Step 3: Command Implementation Structure
Command Definition Template:
command:
name: /command-name
version: 1.0.0
description: |
Brief description of what this command does
category: data | code | agent | workflow | multi-model
parameters:
- name: input
type: file_path
required: true
validation: file_exists
description: Input file to process
- name: --strict
type: boolean
default: false
description: Enable strict validation
- name: --model
type: enum
options: [claude, gemini-megacontext, gemini-search, codex-auto]
default: auto-select
description: AI model to use
routing:
type: micro-skill | cascade | agent | multi-model
target: skill-name | cascade-name | agent-name
model_selection: auto | explicit
binding:
parameter_mapping:
file: ${input}
strictness: ${--strict}
model: ${--model}
output:
format: json | text | file
validation: schema | none
examples:
- command: /command-name input.json --strict
description: Process input.json with strict validation
composition:
chainable: true
pipe_output: stdout
pipe_input: stdin
Step 4: Command Chaining & Composition
Pipeline Patterns:
# Sequential pipeline
/extract data.json | /validate --strict | /transform --format csv > output.csv
# Parallel fan-out
/analyze src/ --parallel [/lint + /security-scan + /test-coverage] | /merge-reports
# Conditional branching
/validate input.json && /deploy-prod || /generate-error-report
# Multi-stage workflow
/audit-pipeline src/ \
--phase theater-detection \
--phase functionality-audit --model codex-auto \
--phase style-audit \
--output report.json
Composition Interface:
interface ChainableCommand {
execute: (input: any) => Promise<CommandResult>
pipe: (next: Command) => ChainableCommand
parallel: (commands: Command[]) => ParallelCommand
conditional: (condition: boolean, ifTrue: Command, ifFalse: Command) => ConditionalCommand
}
Step 5: Auto-Completion & Help
Completion System:
# File path completion
/validate <TAB> # Shows files matching pattern
# Parameter completion
/analyze --<TAB> # Shows available flags
# Model completion
/analyze --model <TAB> # Shows [claude, gemini-megacontext, codex-auto, ...]
# Command discovery
/<TAB> # Shows all available commands by category
Help Generation:
/help command-name
Command: /validate-api
Version: 1.0.0
Category: Data Operations
Description:
Validates API responses against OpenAPI schemas using specialist validation agent
Usage:
/validate-api <file> [--schema <schema_file>] [--strict] [--model <model>]
Parameters:
file Path to API response file (required)
--schema FILE OpenAPI schema file (default: auto-detect)
--strict Enable strict validation mode
--model MODEL AI model [claude|gemini|codex] (default: auto)
Examples:
/validate-api response.json
/validate-api response.json --schema openapi.yaml --strict
/validate-api response.json --model gemini-megacontext
Chains with:
/extract-data → /validate-api → /transform-data
See also:
/validate-csv, /validate-json, /agent-validator
Enhanced Command Templates
1. Data Processing Commands
Template:
command: /process-<datatype>
category: data
routing:
type: micro-skill
target: process-<datatype>
parameters:
- input: file_path (required)
- --format: enum[json, csv, xml]
- --schema: file_path
- --output: file_path
- --model: enum[claude, gemini, codex]
examples:
/extract-json data.json --schema schema.json
/validate-csv data.csv --strict --output report.json
/transform-xml data.xml --format json
Generated Commands:
/extract-json,/extract-csv,/extract-xml/validate-json,/validate-csv,/validate-api/transform-json,/transform-csv,/transform-xml
2. Code Operation Commands
Template:
command: /code-<operation>
category: code
routing:
type: micro-skill | cascade
target: code-<operation>
parameters:
- path: file_path | directory (required)
- --language: enum[python, javascript, typescript, ...]
- --config: file_path
- --fix: boolean (auto-fix issues)
- --model: enum[claude, codex-auto]
examples:
/lint-code src/ --language python --fix
/test-coverage src/ --output coverage-report.json
/refactor-imports src/ --model codex-auto
Generated Commands:
/lint-code,/lint-python,/lint-javascript/test-coverage,/test-suite,/test-watch/refactor-imports,/refactor-di,/refactor-patterns/analyze-complexity,/analyze-security,/analyze-performance
3. Agent Invocation Commands
Template:
command: /agent-<specialty>
category: agent
routing:
type: agent
target: <specialty>-agent
model_selection: auto
parameters:
- task: string (required, detailed task description)
- --context: file_path | directory
- --depth: enum[shallow, normal, deep]
- --model: enum[claude, gemini, codex]
examples:
/agent-rca "Debug intermittent timeout in API" --context src/api/
/agent-reviewer src/feature.js --depth deep
/agent-architect "Design user authentication system" --context docs/
Generated Commands:
/agent-rca→ Root Cause Analyzer/agent-reviewer→ Code Reviewer/agent-architect→ System Architect/agent-security→ Security Auditor/agent-performance→ Performance Optimizer
4. Multi-Model Commands
Template:
command: /<model>-<capability>
category: multi-model
routing:
type: multi-model
target: <model>-cli
model: <model>
parameters:
- task: string (required)
- --context: file_path | directory
- --output: file_path
examples:
/gemini-megacontext "Analyze entire 30K line codebase" --context src/
/gemini-search "What are React 19 breaking changes?"
/gemini-media "Generate architecture diagram" --output diagram.png
/codex-auto "Prototype user auth feature" --context spec.md
/codex-reasoning "Alternative algorithm for sorting" --context src/sort.js
Generated Commands:
/gemini-megacontext→ 1M token context analysis/gemini-search→ Real-time web information/gemini-media→ Image/video generation/gemini-extensions→ Figma, Stripe, Postman integration/codex-auto→ Full Auto sandboxed prototyping/codex-reasoning→ GPT-5-Codex alternative reasoning/claude-reason→ Best overall reasoning (default)
5. Workflow/Cascade Commands
Template:
command: /<workflow-name>
category: workflow
routing:
type: cascade
target: <workflow-name>-cascade
parameters:
- target: file_path | directory (required)
- --phase: enum[all, phase1, phase2, phase3]
- --parallel: boolean (enable parallel execution)
- --model: enum[auto, claude, gemini, codex]
- --output: file_path
examples:
/audit-pipeline src/ --output audit-report.json
/quality-check src/ --parallel --model auto
/deploy-prod --phase all --output deployment-log.txt
Generated Commands:
/audit-pipeline→ theater → functionality → style/quality-check→ [lint + security + coverage] → report/deploy-prod→ validate → test → build → deploy/modernize-legacy→ analyze → refactor → test → document
Integration with Existing Skills
Command Catalog for Current Skills (14 Total)
Audit Skills (4 commands):
/theater-detect src/ # Theater detection audit
/functionality-audit src/ # Functionality audit with Codex iteration
/style-audit src/ # Style and quality audit
/audit-pipeline src/ # All 3 phases sequentially
Multi-Model Skills (7 commands):
/gemini-megacontext "task" # 1M token context
/gemini-search "query" # Real-time web info
/gemini-media "description" # Generate images/videos
/gemini-extensions "task" # Figma, Stripe, etc.
/codex-auto "task" # Full Auto prototyping
/codex-reasoning "problem" # GPT-5-Codex alternative view
/multi-model "task" # Intelligent orchestrator
Root Cause Analysis (1 command):
/agent-rca "problem" # Root cause analysis agent
Three-Tier Architecture (2 commands):
/create-micro-skill "task" # Create new micro-skill
/create-cascade "workflow" # Create new cascade
Command Composition Examples
Example 1: Complete Quality Pipeline:
# Sequential quality checks with multi-model routing
/audit-pipeline src/ \
--phase theater-detection \
--phase functionality-audit --model codex-auto \
--phase style-audit --model claude \
--output quality-report.json
Example 2: Root Cause + Fix Workflow:
# Analyze problem, then auto-fix with Codex
/agent-rca "Intermittent timeout in API" --context src/api/ | \
/codex-auto "Fix identified root cause" --sandbox true
Example 3: Research + Prototype + Test:
# Multi-model cascade
/gemini-search "Best practices for React 19" | \
/codex-auto "Prototype React 19 feature using best practices" | \
/functionality-audit --model codex-auto
Example 4: Parallel Quality Checks:
# Fan-out to multiple tools
/quality-check src/ --parallel [
/theater-detect,
/lint-code,
/test-coverage,
/analyze-security
] | /merge-reports --output comprehensive-report.json
Integration with Claude Code Command System
Command Registration
Auto-Registration Pattern:
# On skill installation, auto-register commands
.claude/skills/*/SKILL.md → parse → generate → .claude/commands/<command>.md
# Command file format
.claude/commands/validate-api.md:
---
name: validate-api
binding: micro-skill:validate-api
---
Validate API responses against OpenAPI schemas.
Usage: /validate-api <file> [--schema <schema>] [--strict]
Command Discovery
Discovery Mechanism:
on_startup:
- scan ~/.claude/skills/*/SKILL.md
- scan .claude/skills/*/SKILL.md
- parse metadata (name, inputs, category)
- generate command definitions
- register with Claude Code CLI
- build auto-completion index
on_update:
- watch for skill changes
- regenerate affected commands
- update completion index
Parameter Validation
Validation Pipeline:
interface ValidationPipeline {
// Type checking
validateTypes: (params: any) => ValidationResult
// File existence
validatePaths: (paths: string[]) => ValidationResult
// Enum constraints
validateEnums: (values: any) => ValidationResult
// Custom validators
validateCustom: (value: any, validator: Function) => ValidationResult
// Aggregate results
aggregate: () => ValidationResult
}
// Before command execution
const result = validate(command, parameters)
if (!result.valid) {
throw new ValidationError(result.errors)
}
Command Chaining Patterns
Pattern 1: Sequential Pipeline
# Data processing pipeline
/extract-json data.json | \
/validate-api --schema openapi.yaml | \
/transform-json --format csv | \
/generate-report --template summary
Pattern 2: Parallel Fan-Out
# Parallel quality checks
/analyze src/ --parallel [
/lint-code,
/security-scan --deep,
/test-coverage,
/complexity-analysis
] | /merge-reports --format html
Pattern 3: Conditional Branching
# Deploy based on quality
/validate-quality src/ && \
/deploy-prod --environment production || \
/generate-quality-report --notify team
Pattern 4: Iterative Refinement
# Refactor until quality threshold met
while [[ $(quality-score) -lt 85 ]]; do
/refactor-code src/ --model codex-auto
/test-coverage src/
done
Pattern 5: Multi-Model Cascade
# Research → Design → Implement → Test
/gemini-search "Best practices for feature X" | \
/agent-architect "Design feature X with best practices" | \
/codex-auto "Implement designed feature" | \
/functionality-audit --model codex-auto | \
/style-audit
Best Practices (Enhanced)
Command Design
- ✅ Use clear, consistent naming (verb-noun)
- ✅ Limit positional parameters (max 2-3)
- ✅ Provide sensible defaults
- ✅ Enable command chaining
- ✅ Include comprehensive help
- ✅ Support model selection for flexibility
Parameter Design
- ✅ Type-safe with validation
- ✅ Auto-completion enabled
- ✅ Required vs optional clearly marked
- ✅ Enum constraints for options
- ✅ File path validation
Integration Design
- ✅ Clean routing to skills/agents
- ✅ Standardized output formats
- ✅ Composable interfaces
- ✅ Error handling with clear messages
- ✅ Progress reporting for long operations
Working with Slash Command Encoder
Invocation: "Create slash commands for [skill/cascade/agent] with [parameters] that [composition pattern]"
The encoder will:
- Auto-discover all installed skills
- Design command naming and parameters
- Create validation schemas
- Generate command definitions
- Register with Claude Code CLI
- Build auto-completion index
- Produce comprehensive command catalog
Advanced Features:
- Automatic skill discovery and catalog generation
- Intelligent multi-model routing
- Type-safe parameter validation
- Command chaining and composition
- Auto-completion for parameters
- Comprehensive help generation
- Integration with Claude Code CLI
Integration:
- Works with micro-skill-creator for skill-to-command generation
- Works with cascade-orchestrator for workflow commands
- Works with multi-model system for AI routing
- Works with audit-pipeline for quality commands
- Works with root-cause-analyzer for debugging commands
Version 2.0 Enhancements:
- Auto-discovery of all installed skills
- Multi-model intelligent routing
- Command chaining and composition patterns
- Type-safe parameter validation
- Auto-completion system
- Comprehensive command catalog generation
- Integration with Gemini/Codex CLIs
- Enhanced help and documentation generation
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/slash-command-encoderCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
