Back to Skills

Data Cleaning Pipeline

aj-geddes
Updated Today
67 views
7
7
View on GitHub
Metaautomationdesigndata

About

This skill helps developers build automated data cleaning pipelines for preprocessing raw data into analysis-ready formats. It provides capabilities for handling missing values, detecting outliers, standardizing data types, and removing duplicates. Use this skill when you need to create robust data quality processes for data pipeline automation and machine learning preparation.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/aj-geddes/useful-ai-prompts
Git CloneAlternative
git clone https://github.com/aj-geddes/useful-ai-prompts.git ~/.claude/skills/Data Cleaning Pipeline

Copy and paste this command in Claude Code to install this skill

Documentation

Data Cleaning Pipeline

Data cleaning is the foundation of any successful data project. A robust data cleaning pipeline transforms raw, messy data into a clean, standardized format suitable for analysis and modeling.

Core Components

  • Missing Value Handling: Imputation and removal strategies
  • Outlier Detection & Treatment: Identifying and handling anomalies
  • Data Type Standardization: Ensuring correct data types
  • Duplicate Removal: Identifying and removing duplicates
  • Normalization & Scaling: Standardizing value ranges
  • Text Cleaning: Handling text data

Cleaning Strategies

  • Deletion: Removing rows or columns
  • Imputation: Filling with mean, median, or predictive models
  • Transformation: Converting between formats
  • Validation: Ensuring data integrity rules

Implementation with Python

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.impute import SimpleImputer, KNNImputer

# Load raw data
df = pd.read_csv('raw_data.csv')

# Step 1: Identify and handle missing values
print("Missing values:\n", df.isnull().sum())

# Strategy 1: Delete rows with critical missing values
df = df.dropna(subset=['customer_id', 'transaction_date'])

# Strategy 2: Impute numerical columns with median
imputer = SimpleImputer(strategy='median')
df['age'] = imputer.fit_transform(df[['age']])

# Strategy 3: Use KNN imputation for related features
knn_imputer = KNNImputer(n_neighbors=5)
numeric_cols = df.select_dtypes(include=[np.number]).columns
df[numeric_cols] = knn_imputer.fit_transform(df[numeric_cols])

# Strategy 4: Fill categorical with mode
df['category'] = df['category'].fillna(df['category'].mode()[0])

# Step 2: Handle duplicates
print(f"Duplicate rows: {df.duplicated().sum()}")
df = df.drop_duplicates()

# Duplicate on specific columns
df = df.drop_duplicates(subset=['customer_id', 'transaction_date'])

# Step 3: Outlier detection and handling
Q1 = df['amount'].quantile(0.25)
Q3 = df['amount'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Remove outliers
df = df[(df['amount'] >= lower_bound) & (df['amount'] <= upper_bound)]

# Alternative: Cap outliers
df['amount'] = df['amount'].clip(lower=lower_bound, upper=upper_bound)

# Step 4: Data type standardization
df['transaction_date'] = pd.to_datetime(df['transaction_date'])
df['customer_id'] = df['customer_id'].astype('int64')
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')

# Step 5: Text cleaning
df['name'] = df['name'].str.strip().str.lower()
df['name'] = df['name'].str.replace('[^a-z0-9\s]', '', regex=True)

# Step 6: Normalization and scaling
scaler = StandardScaler()
df[['age', 'income']] = scaler.fit_transform(df[['age', 'income']])

# MinMax scaling for bounded range [0, 1]
minmax_scaler = MinMaxScaler()
df[['score']] = minmax_scaler.fit_transform(df[['score']])

# Step 7: Create data quality report
def create_quality_report(df_original, df_cleaned):
    report = {
        'Original rows': len(df_original),
        'Cleaned rows': len(df_cleaned),
        'Rows removed': len(df_original) - len(df_cleaned),
        'Removal percentage': ((len(df_original) - len(df_cleaned)) / len(df_original) * 100),
        'Original missing': df_original.isnull().sum().sum(),
        'Cleaned missing': df_cleaned.isnull().sum().sum(),
    }
    return pd.DataFrame(report, index=[0])

quality = create_quality_report(df, df)
print(quality)

# Step 8: Validation checks
assert df['age'].isnull().sum() == 0, "Age has missing values"
assert df['transaction_date'].dtype == 'datetime64[ns]', "Date not datetime"
assert (df['amount'] >= 0).all(), "Negative amounts detected"

print("Data cleaning pipeline completed successfully!")

Pipeline Architecture

class DataCleaningPipeline:
    def __init__(self):
        self.cleaner_steps = []

    def add_step(self, func, description):
        self.cleaner_steps.append((func, description))
        return self

    def execute(self, df):
        for func, desc in self.cleaner_steps:
            print(f"Executing: {desc}")
            df = func(df)
        return df

# Usage
pipeline = DataCleaningPipeline()
pipeline.add_step(
    lambda df: df.dropna(subset=['customer_id']),
    "Remove rows with missing customer_id"
).add_step(
    lambda df: df.drop_duplicates(),
    "Remove duplicate rows"
).add_step(
    lambda df: df[(df['amount'] > 0) & (df['amount'] < 100000)],
    "Filter invalid amount ranges"
)

df_clean = pipeline.execute(df)

Advanced Cleaning Techniques

# Step 9: Feature-specific cleaning
df['phone'] = df['phone'].str.replace(r'\D', '', regex=True)  # Remove non-digits

# Step 10: Datetime handling
df['created_date'] = pd.to_datetime(df['created_date'], errors='coerce')
df['days_since_creation'] = (pd.Timestamp.now() - df['created_date']).dt.days

# Step 11: Categorical standardization
df['status'] = df['status'].str.lower().str.strip()
df['status'] = df['status'].replace({
    'active': 'active',
    'inactive': 'inactive',
    'pending': 'pending',
})

# Step 12: Numeric constraint checking
df['age'] = df['age'].where((df['age'] >= 0) & (df['age'] <= 150), np.nan)
df['percentage'] = df['percentage'].where((df['percentage'] >= 0) & (df['percentage'] <= 100), np.nan)

# Step 13: Create data quality score
quality_score = {
    'Missing %': (df.isnull().sum() / len(df) * 100).mean(),
    'Duplicates %': (df.duplicated().sum() / len(df) * 100),
    'Complete Features': (df.notna().sum() / len(df)).mean() * 100,
}

# Step 14: Generate cleaning report
cleaning_report = f"""
DATA CLEANING REPORT
====================
Rows removed: {len(df) - len(df_clean)}
Columns: {len(df_clean.columns)}
Remaining rows: {len(df_clean)}
Completeness: {(df_clean.notna().sum().sum() / (len(df_clean) * len(df_clean.columns)) * 100):.1f}%
"""
print(cleaning_report)

Key Decisions

  • How to handle missing values (delete vs impute)?
  • Which outliers are legitimate business cases?
  • What are acceptable value ranges?
  • Which duplicates are true duplicates?
  • How to standardize categorical values?

Validation Steps

  • Check for data type consistency
  • Verify value ranges are reasonable
  • Confirm no unintended data loss
  • Document all transformations applied
  • Create audit trail of changes

Deliverables

  • Cleaned dataset with quality metrics
  • Data cleaning log documenting all steps
  • Validation report confirming data integrity
  • Before/after comparison statistics
  • Cleaning code and pipeline documentation

GitHub Repository

aj-geddes/useful-ai-prompts
Path: skills/data-cleaning-pipeline

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill