when-using-advanced-swarm-use-swarm-advanced
About
This skill provides advanced swarm coordination with dynamic topology switching and self-organizing behaviors for complex multi-agent systems. Use it when you need sophisticated orchestration with adaptive topology selection and intelligent coordination patterns. It's designed for developers building complex swarm infrastructures requiring dynamic reconfiguration.
Documentation
Advanced Swarm Coordination SOP
Overview
This skill implements advanced swarm patterns with dynamic topology switching, self-organizing behaviors, and intelligent coordination for complex multi-agent systems. It enables sophisticated swarm orchestration with adaptive topology selection and performance optimization.
Agents & Responsibilities
hierarchical-coordinator
Role: Tree-based coordination with leader-follower patterns Responsibilities:
- Manage hierarchical swarm structures
- Coordinate parent-child agent relationships
- Handle task delegation cascades
- Monitor hierarchy performance
mesh-coordinator
Role: Peer-to-peer coordination with full connectivity Responsibilities:
- Enable direct agent-to-agent communication
- Manage mesh network topology
- Coordinate distributed consensus
- Handle fault tolerance
adaptive-coordinator
Role: Dynamic topology switching based on workload Responsibilities:
- Analyze task complexity and requirements
- Switch topologies dynamically
- Optimize resource allocation
- Monitor and adapt to performance
Phase 1: Initialize Swarm Infrastructure
Objective
Establish foundation for advanced swarm coordination with proper topology and agent configuration.
Evidence-Based Validation
- Swarm initialized with confirmed topology
- All agents spawned successfully
- Memory coordination active
- Health checks passing
Scripts
# Initialize hierarchical swarm
npx claude-flow@alpha swarm init --topology hierarchical --max-agents 10
# Initialize mesh swarm
npx claude-flow@alpha swarm init --topology mesh --max-agents 8
# Initialize adaptive swarm
npx claude-flow@alpha swarm init --topology adaptive --max-agents 12 --strategy balanced
# Verify initialization
npx claude-flow@alpha swarm status --verbose
# Setup memory coordination
npx claude-flow@alpha memory store --key "swarm/topology" --value "hierarchical"
npx claude-flow@alpha memory store --key "swarm/max-agents" --value "10"
MCP Integration
// Initialize swarm with MCP
mcp__claude-flow__swarm_init({
topology: "hierarchical",
maxAgents: 10,
strategy: "balanced"
})
// Alternative: Mesh topology
mcp__claude-flow__swarm_init({
topology: "mesh",
maxAgents: 8,
strategy: "specialized"
})
// Alternative: Adaptive topology
mcp__claude-flow__swarm_init({
topology: "adaptive",
maxAgents: 12,
strategy: "adaptive"
})
Memory Patterns
# Store swarm configuration
npx claude-flow@alpha memory store \
--key "swarm/config" \
--value '{"topology":"hierarchical","maxAgents":10,"strategy":"balanced"}'
# Store agent assignments
npx claude-flow@alpha memory store \
--key "swarm/agents/coordinator-1" \
--value '{"type":"hierarchical-coordinator","status":"active","level":0}'
Validation Criteria
- Swarm ID generated and confirmed
- Topology matches requested configuration
- Agent count within specified limits
- Memory coordination operational
- Health endpoint responding
Phase 2: Configure Topology
Objective
Select and configure optimal topology pattern based on task requirements and complexity.
Evidence-Based Validation
- Topology selected based on analysis
- Coordinator agents spawned
- Agent connections established
- Topology metrics baseline recorded
Scripts
# Spawn hierarchical coordinator
npx claude-flow@alpha agent spawn \
--type coordinator \
--role "hierarchical-coordinator" \
--capabilities "task-delegation,hierarchy-management"
# Spawn mesh coordinator
npx claude-flow@alpha agent spawn \
--type coordinator \
--role "mesh-coordinator" \
--capabilities "peer-coordination,consensus"
# Spawn adaptive coordinator
npx claude-flow@alpha agent spawn \
--type coordinator \
--role "adaptive-coordinator" \
--capabilities "topology-switching,optimization"
# Configure topology
npx claude-flow@alpha swarm configure \
--topology hierarchical \
--levels 3 \
--branching-factor 3
# Verify topology
npx claude-flow@alpha swarm status --show-topology
MCP Integration
// Spawn coordinator agents
mcp__claude-flow__agent_spawn({
type: "coordinator",
name: "hierarchical-coordinator",
capabilities: ["task-delegation", "hierarchy-management"]
})
mcp__claude-flow__agent_spawn({
type: "coordinator",
name: "mesh-coordinator",
capabilities: ["peer-coordination", "consensus"]
})
mcp__claude-flow__agent_spawn({
type: "coordinator",
name: "adaptive-coordinator",
capabilities: ["topology-switching", "optimization"]
})
Topology Selection Guide
Hierarchical:
- Best for: Clear task hierarchies, delegation workflows
- Pros: Efficient delegation, clear authority
- Cons: Single point of failure at root
- Use when: Tasks have natural parent-child relationships
Mesh:
- Best for: Peer collaboration, distributed consensus
- Pros: High fault tolerance, no bottlenecks
- Cons: Higher communication overhead
- Use when: Agents need direct communication
Star:
- Best for: Centralized coordination, simple workflows
- Pros: Simple control, low complexity
- Cons: Central coordinator bottleneck
- Use when: Single coordinator can handle all traffic
Ring:
- Best for: Sequential processing, pipeline workflows
- Pros: Predictable flow, ordered execution
- Cons: Latency accumulation
- Use when: Tasks must be processed in sequence
Adaptive:
- Best for: Dynamic workloads, variable complexity
- Pros: Automatic optimization, flexible
- Cons: Overhead from topology switching
- Use when: Workload patterns vary significantly
Memory Patterns
# Store topology configuration
npx claude-flow@alpha memory store \
--key "swarm/topology/config" \
--value '{"type":"hierarchical","levels":3,"branchingFactor":3}'
# Store baseline metrics
npx claude-flow@alpha memory store \
--key "swarm/metrics/baseline" \
--value '{"latency":45,"throughput":120,"agentUtilization":0.75}'
Validation Criteria
- Coordinator agents active and responsive
- Topology structure matches configuration
- Agent connections verified
- Baseline metrics recorded
- No configuration errors
Phase 3: Deploy Agents
Objective
Spawn specialized agents based on topology and assign roles with proper coordination.
Evidence-Based Validation
- All required agents spawned
- Agent roles assigned correctly
- Coordination protocols active
- Agent health checks passing
Scripts
# Spawn specialized agents for hierarchical topology
npx claude-flow@alpha agent spawn --type researcher --capabilities "analysis,patterns"
npx claude-flow@alpha agent spawn --type coder --capabilities "implementation,testing"
npx claude-flow@alpha agent spawn --type reviewer --capabilities "quality,security"
# Assign agents to hierarchy levels
npx claude-flow@alpha swarm assign \
--agent-id "agent-001" \
--level 1 \
--parent "coordinator-1"
# Spawn agents for mesh topology
npx claude-flow@alpha agent spawn --type analyst --peer-mode enabled
npx claude-flow@alpha agent spawn --type optimizer --peer-mode enabled
# Configure peer connections
npx claude-flow@alpha swarm connect-peers --all
# List all agents
npx claude-flow@alpha agent list --show-roles --show-connections
MCP Integration
// Spawn specialized agents
mcp__claude-flow__agent_spawn({
type: "researcher",
capabilities: ["analysis", "patterns", "research"]
})
mcp__claude-flow__agent_spawn({
type: "coder",
capabilities: ["implementation", "testing", "debugging"]
})
mcp__claude-flow__agent_spawn({
type: "analyst",
capabilities: ["optimization", "performance", "metrics"]
})
// Check agent status
mcp__claude-flow__agent_list({
filter: "active"
})
mcp__claude-flow__agent_metrics({
metric: "all"
})
Agent Assignment Patterns
Hierarchical Assignment:
# Level 0: Root coordinator
# Level 1: Department coordinators
# Level 2: Task executors
# Level 3: Specialized workers
npx claude-flow@alpha memory store \
--key "swarm/hierarchy/level-0" \
--value '{"agent":"coordinator-1","role":"root"}'
npx claude-flow@alpha memory store \
--key "swarm/hierarchy/level-1" \
--value '["agent-001","agent-002","agent-003"]'
Mesh Assignment:
# All agents are peers with direct connections
npx claude-flow@alpha memory store \
--key "swarm/mesh/peers" \
--value '["agent-001","agent-002","agent-003","agent-004"]'
Memory Patterns
# Store agent roster
npx claude-flow@alpha memory store \
--key "swarm/agents/roster" \
--value '{"total":8,"active":8,"idle":0,"roles":{"researcher":2,"coder":3,"reviewer":2,"optimizer":1}}'
# Store agent capabilities
npx claude-flow@alpha memory store \
--key "swarm/agents/agent-001/capabilities" \
--value '["analysis","patterns","research","documentation"]'
Validation Criteria
- Agent count matches requirements
- All agents responding to health checks
- Role assignments verified
- Coordination protocols established
- Memory state synchronized
Phase 4: Monitor Performance
Objective
Track swarm performance metrics, identify bottlenecks, and gather optimization data.
Evidence-Based Validation
- Metrics collected continuously
- Performance baseline established
- Bottlenecks identified
- Optimization opportunities logged
Scripts
# Monitor swarm status
npx claude-flow@alpha swarm monitor --interval 5 --duration 60
# Get agent metrics
npx claude-flow@alpha agent metrics --all --format json
# Check task performance
npx claude-flow@alpha task status --show-timing
# Analyze bottlenecks
npx claude-flow@alpha performance analyze --detect-bottlenecks
# Export metrics
npx claude-flow@alpha metrics export --output ./swarm-metrics.json
# Generate performance report
npx claude-flow@alpha performance report \
--include-agents \
--include-topology \
--output ./performance-report.md
MCP Integration
// Monitor swarm in real-time
mcp__claude-flow__swarm_monitor({
duration: 60,
interval: 5
})
// Get comprehensive metrics
mcp__claude-flow__agent_metrics({
metric: "all"
})
// Check task status
mcp__claude-flow__task_status({
detailed: true
})
// Run performance benchmarks
mcp__claude-flow__benchmark_run({
type: "swarm",
iterations: 10
})
Key Metrics to Track
Swarm-Level Metrics:
- Total throughput (tasks/minute)
- Average latency per task
- Agent utilization rate
- Coordination overhead
- Memory usage
- Network latency
Agent-Level Metrics:
- Task completion rate
- Response time
- Error rate
- Resource consumption
- Idle time percentage
Topology-Level Metrics:
- Connection count
- Message passing efficiency
- Fault tolerance score
- Scalability index
Memory Patterns
# Store performance snapshot
npx claude-flow@alpha memory store \
--key "swarm/metrics/snapshot-$(date +%s)" \
--value '{"throughput":145,"latency":38,"utilization":0.82,"errors":2}'
# Store bottleneck analysis
npx claude-flow@alpha memory store \
--key "swarm/analysis/bottlenecks" \
--value '{"coordinator-1":{"type":"high-load","severity":"medium","recommendation":"add-peer"}}'
Validation Criteria
- Metrics collected every 5 seconds
- No data loss or gaps
- Bottlenecks identified and documented
- Performance trends visible
- Alerts triggered for anomalies
Phase 5: Optimize Dynamically
Objective
Apply dynamic optimizations including topology switching, agent rebalancing, and resource allocation.
Evidence-Based Validation
- Optimization strategies applied
- Performance improvements measured
- Topology switches successful
- Resource allocation optimized
- Final metrics show improvement
Scripts
# Analyze optimization opportunities
npx claude-flow@alpha performance analyze --recommend-optimizations
# Switch topology dynamically
npx claude-flow@alpha swarm reconfigure --topology mesh
# Rebalance agents
npx claude-flow@alpha swarm rebalance --strategy adaptive
# Scale swarm
npx claude-flow@alpha swarm scale --target-agents 12
# Apply neural optimizations
npx claude-flow@alpha neural train --pattern convergent
# Validate improvements
npx claude-flow@alpha performance compare \
--baseline ./baseline-metrics.json \
--current ./current-metrics.json
# Generate optimization report
npx claude-flow@alpha performance report \
--show-improvements \
--output ./optimization-report.md
MCP Integration
// Get optimization recommendations
mcp__claude-flow__benchmark_run({
type: "swarm",
iterations: 5
})
// Train neural patterns
mcp__claude-flow__neural_train({
agentId: "adaptive-coordinator",
iterations: 10
})
// Check neural patterns
mcp__claude-flow__neural_patterns({
pattern: "all"
})
Optimization Strategies
Topology Switching:
# Switch from hierarchical to mesh if bottleneck detected
if [ "$COORDINATOR_LOAD" -gt 80 ]; then
npx claude-flow@alpha swarm reconfigure --topology mesh
fi
# Switch to ring for sequential processing
if [ "$TASK_TYPE" == "pipeline" ]; then
npx claude-flow@alpha swarm reconfigure --topology ring
fi
Agent Rebalancing:
# Identify underutilized agents
npx claude-flow@alpha agent metrics --filter "utilization<0.3"
# Reassign tasks from overloaded agents
npx claude-flow@alpha swarm rebalance --threshold 0.8
# Add agents if all are highly utilized
if [ "$AVG_UTILIZATION" -gt 0.9 ]; then
npx claude-flow@alpha agent spawn --type optimizer --auto-assign
fi
Resource Allocation:
# Allocate more memory to high-priority agents
npx claude-flow@alpha agent configure \
--agent-id "agent-001" \
--memory-limit 2048MB
# Adjust coordination intervals
npx claude-flow@alpha swarm configure --sync-interval 3s
Memory Patterns
# Store optimization actions
npx claude-flow@alpha memory store \
--key "swarm/optimization/actions" \
--value '{"timestamp":"2025-10-30T10:30:00Z","action":"topology-switch","from":"hierarchical","to":"mesh","reason":"coordinator-bottleneck"}'
# Store improvement metrics
npx claude-flow@alpha memory store \
--key "swarm/optimization/improvements" \
--value '{"throughput":{"before":120,"after":175,"improvement":45.8},"latency":{"before":45,"after":32,"improvement":28.9}}'
Validation Criteria
- Performance metrics improved by ≥15%
- Bottlenecks eliminated or reduced
- Agent utilization balanced (±10%)
- No errors introduced by optimizations
- Topology switches completed successfully
Success Criteria
Overall Validation
- Swarm infrastructure stable and operational
- Optimal topology selected and configured
- All agents deployed and coordinated
- Performance monitored and optimized
- Improvements measured and validated
Performance Targets
- Throughput increase: ≥20%
- Latency reduction: ≥15%
- Agent utilization: 70-90%
- Error rate: <2%
- Coordination overhead: <10%
Common Issues & Solutions
Issue: Coordinator Bottleneck
Symptoms: High latency, coordinator CPU >90% Solution: Switch to mesh topology or add peer coordinators
Issue: Agent Underutilization
Symptoms: Many agents idle, unbalanced load Solution: Rebalance task assignment, reduce agent count
Issue: Topology Switch Failures
Symptoms: Errors during reconfiguration, lost connections Solution: Drain tasks before switching, validate agent states
Issue: Memory Synchronization Lag
Symptoms: Agents have inconsistent state Solution: Increase sync frequency, use distributed consensus
Best Practices
- Start Simple: Begin with hierarchical or star topology
- Monitor First: Collect baseline metrics before optimizing
- Gradual Scaling: Add agents incrementally
- Test Topology Switches: Validate in non-production first
- Document Patterns: Record successful configurations
- Use Neural Training: Improve pattern recognition
- Enable Auto-Healing: Configure self-recovery mechanisms
- Regular Health Checks: Monitor agent health continuously
Integration Points
With Other Skills
- swarm-orchestration: For complex task coordination
- performance-analysis: For deep performance insights
- hive-mind: For collective intelligence patterns
- cascade-orchestrator: For workflow chaining
With External Systems
- GitHub Actions for CI/CD integration
- Prometheus for metrics collection
- Grafana for visualization
- Slack/Discord for alerts
Next Steps
After completing this skill:
- Explore specific topology patterns in depth
- Implement custom coordination protocols
- Integrate with monitoring systems
- Create domain-specific swarm templates
- Experiment with hybrid topologies
References
- Claude Flow Documentation: https://github.com/ruvnet/claude-flow
- Swarm Intelligence Patterns
- Multi-Agent Coordination Theory
- Dynamic Topology Selection Algorithms
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/when-using-advanced-swarm-use-swarm-advancedCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
when-orchestrating-swarm-use-swarm-orchestration
OtherThis skill provides advanced multi-agent swarm orchestration for complex workflows. It handles task decomposition, distributed execution across specialized agents, and result synthesis. Use it when you need to coordinate multiple AI agents to solve intricate problems requiring parallel processing.
github-release-management
OtherThis Claude Skill automates comprehensive GitHub release orchestration using AI swarm coordination for versioning, testing, deployment, and rollback management. It's ideal for developers needing to streamline their CI/CD pipeline with intelligent automation from changelog generation to multi-platform deployment. Use it when you want to coordinate complex release workflows across repositories with built-in rollback capabilities.
github-multi-repo
OtherThe github-multi-repo skill enables AI swarm orchestration for managing multiple GitHub repositories simultaneously. It provides cross-repository coordination, package synchronization, and architecture optimization across distributed workflows. Use this skill when you need to automate organization-wide repository management and maintain consistency across interconnected projects.
swarm-advanced
OtherThis skill provides advanced swarm orchestration patterns for complex distributed workflows in research, development, and testing. It enables developers to coordinate multiple specialized agents using both MCP tools and CLI commands for parallel processing. Use it when you need to manage sophisticated multi-agent systems with mesh topologies and distributed task coordination.
