Back to Skills

aggregating-performance-metrics

jeremylongshore
Updated Today
22 views
409
51
409
View on GitHub
Metaaidesigndata

About

This skill enables Claude to aggregate and centralize performance metrics from various sources like applications, databases, and external services. It is triggered by requests to consolidate metrics for monitoring and helps design a metrics taxonomy, choose aggregation tools, and set up dashboards and alerts.

Documentation

Overview

This skill empowers Claude to streamline performance monitoring by aggregating metrics from diverse systems into a unified view. It simplifies the process of collecting, centralizing, and analyzing performance data, leading to improved insights and faster issue resolution.

How It Works

  1. Metrics Taxonomy Design: Claude assists in defining a clear and consistent naming convention for metrics across all systems.
  2. Aggregation Tool Selection: Claude helps select the appropriate metrics aggregation tool (e.g., Prometheus, StatsD, CloudWatch) based on the user's environment and requirements.
  3. Configuration and Integration: Claude guides the configuration of the chosen aggregation tool and its integration with various data sources.
  4. Dashboard and Alert Setup: Claude helps set up dashboards for visualizing metrics and defining alerts for critical performance indicators.

When to Use This Skill

This skill activates when you need to:

  • Centralize performance metrics from multiple applications and systems.
  • Design a consistent metrics naming convention.
  • Choose the right metrics aggregation tool for your needs.
  • Set up dashboards and alerts for performance monitoring.

Examples

Example 1: Centralizing Application and System Metrics

User request: "Aggregate application and system metrics into Prometheus."

The skill will:

  1. Guide the user in defining metrics for applications (e.g., request latency, error rates) and systems (e.g., CPU usage, memory utilization).
  2. Help configure Prometheus to scrape metrics from the application and system endpoints.

Example 2: Setting Up Alerts for Database Performance

User request: "Centralize database metrics and set up alerts for slow queries."

The skill will:

  1. Help the user define metrics for database performance (e.g., query execution time, connection pool usage).
  2. Guide the user in configuring the aggregation tool to collect these metrics from the database.
  3. Assist in setting up alerts in the aggregation tool to notify the user when query execution time exceeds a defined threshold.

Best Practices

  • Naming Conventions: Use a consistent and well-defined naming convention for all metrics to ensure clarity and ease of analysis.
  • Granularity: Choose an appropriate level of granularity for metrics to balance detail and storage requirements.
  • Retention Policies: Define retention policies for metrics to manage storage space and ensure data is available for historical analysis.

Integration

This skill integrates with other Claude Code plugins that manage infrastructure, deploy applications, and monitor system health. For example, it can be used in conjunction with a deployment plugin to automatically configure metrics collection after a new application deployment.

Quick Install

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/metrics-aggregator

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
Path: backups/skills-migration-20251108-070147/plugins/performance/metrics-aggregator/skills/metrics-aggregator
aiautomationclaude-codedevopsmarketplacemcp

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill