Back to Skills

Network Analysis

aj-geddes
Updated Yesterday
63 views
7
7
View on GitHub
Designdesign

About

This skill enables developers to analyze network structures to identify communities, measure node importance via centrality metrics, and visualize relationships. It's ideal for examining social networks, organizational structures, and any system of interconnected entities. Use it to uncover influential nodes, detect densely connected groups, and understand the overall properties of a network.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/aj-geddes/useful-ai-prompts
Git CloneAlternative
git clone https://github.com/aj-geddes/useful-ai-prompts.git ~/.claude/skills/Network Analysis

Copy and paste this command in Claude Code to install this skill

Documentation

Network Analysis

Network analysis examines relationships and connections between entities, revealing community structure, influence patterns, and network properties.

Network Concepts

  • Nodes: Individual entities
  • Edges: Connections/relationships
  • Degree: Number of connections
  • Centrality: Node importance measures
  • Community: Densely connected groups
  • Clustering Coefficient: Local density

Key Metrics

  • Degree Centrality: Number of connections
  • Betweenness Centrality: Control over paths
  • Closeness Centrality: Average distance to others
  • Eigenvector Centrality: Connections to important nodes
  • Modularity: Community structure strength

Implementation with Python

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
from collections import defaultdict, Counter
import seaborn as sns

# Create sample network (social network)
G = nx.Graph()

# Add nodes with attributes
nodes = [
    ('Alice', {'role': 'Manager', 'dept': 'Sales'}),
    ('Bob', {'role': 'Engineer', 'dept': 'Tech'}),
    ('Carol', {'role': 'Designer', 'dept': 'Design'}),
    ('David', {'role': 'Engineer', 'dept': 'Tech'}),
    ('Eve', {'role': 'Analyst', 'dept': 'Sales'}),
    ('Frank', {'role': 'Manager', 'dept': 'HR'}),
    ('Grace', {'role': 'Designer', 'dept': 'Design'}),
    ('Henry', {'role': 'Engineer', 'dept': 'Tech'}),
    ('Iris', {'role': 'Analyst', 'dept': 'Sales'}),
    ('Jack', {'role': 'Manager', 'dept': 'Finance'}),
]

for node, attrs in nodes:
    G.add_node(node, **attrs)

# Add edges (relationships)
edges = [
    ('Alice', 'Bob'), ('Alice', 'Carol'), ('Alice', 'Eve'),
    ('Bob', 'David'), ('Bob', 'Henry'), ('Carol', 'Grace'),
    ('David', 'Henry'), ('Eve', 'Iris'), ('Frank', 'Jack'),
    ('Grace', 'Carol'), ('Alice', 'Frank'), ('Bob', 'Carol'),
    ('Eve', 'Alice'), ('Iris', 'Eve'), ('Jack', 'Frank'),
    ('Henry', 'David'), ('Carol', 'David'),
]

G.add_edges_from(edges)

print("Network Summary:")
print(f"Nodes: {G.number_of_nodes()}")
print(f"Edges: {G.number_of_edges()}")
print(f"Density: {nx.density(G):.2%}")

# 1. Degree Centrality
degree_centrality = nx.degree_centrality(G)
print("\n1. Degree Centrality (Top 5):")
for node, score in sorted(degree_centrality.items(), key=lambda x: x[1], reverse=True)[:5]:
    print(f"  {node}: {score:.3f}")

# 2. Betweenness Centrality (control over network)
betweenness_centrality = nx.betweenness_centrality(G)
print("\n2. Betweenness Centrality (Top 5):")
for node, score in sorted(betweenness_centrality.items(), key=lambda x: x[1], reverse=True)[:5]:
    print(f"  {node}: {score:.3f}")

# 3. Closeness Centrality (average distance to others)
closeness_centrality = nx.closeness_centrality(G)
print("\n3. Closeness Centrality (Top 5):")
for node, score in sorted(closeness_centrality.items(), key=lambda x: x[1], reverse=True)[:5]:
    print(f"  {node}: {score:.3f}")

# 4. Eigenvector Centrality
try:
    eigenvector_centrality = nx.eigenvector_centrality(G, max_iter=100)
    print("\n4. Eigenvector Centrality (Top 5):")
    for node, score in sorted(eigenvector_centrality.items(), key=lambda x: x[1], reverse=True)[:5]:
        print(f"  {node}: {score:.3f}")
except:
    print("\n4. Eigenvector Centrality: Not converged")

# 5. Community Detection (using modularity)
from networkx.algorithms import community

communities = list(community.greedy_modularity_communities(G))
print(f"\n5. Community Detection:")
print(f"Number of communities: {len(communities)}")
for i, comm in enumerate(communities):
    print(f"  Community {i+1}: {list(comm)}")

# 6. Network Statistics
degrees = [G.degree(n) for n in G.nodes()]
print(f"\n6. Network Statistics:")
print(f"Average Degree: {np.mean(degrees):.2f}")
print(f"Max Degree: {max(degrees)}")
print(f"Min Degree: {min(degrees)}")
print(f"Clustering Coefficient: {nx.average_clustering(G):.3f}")
print(f"Number of Triangles: {sum(nx.triangles(G).values()) // 3}")

# Visualization
fig, axes = plt.subplots(2, 2, figsize=(15, 12))

# Network layout
pos = nx.spring_layout(G, k=0.5, iterations=50, seed=42)

# 1. Network Graph (colored by degree)
ax = axes[0, 0]
node_colors = [degree_centrality[node] for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_color=node_colors, node_size=1000, cmap='YlOrRd', ax=ax)
nx.draw_networkx_edges(G, pos, alpha=0.5, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=8, ax=ax)
ax.set_title('Network Graph (Colored by Degree Centrality)')
ax.axis('off')

# 2. Network Graph (colored by communities)
ax = axes[0, 1]
color_map = []
colors = plt.cm.Set3(np.linspace(0, 1, len(communities)))
node_to_color = {}
for i, comm in enumerate(communities):
    for node in comm:
        node_to_color[node] = colors[i]
color_map = [node_to_color[node] for node in G.nodes()]

nx.draw_networkx_nodes(G, pos, node_color=color_map, node_size=1000, ax=ax)
nx.draw_networkx_edges(G, pos, alpha=0.5, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=8, ax=ax)
ax.set_title('Network Graph (Colored by Community)')
ax.axis('off')

# 3. Centrality Comparison
ax = axes[1, 0]
centrality_df = pd.DataFrame({
    'Degree': degree_centrality,
    'Betweenness': betweenness_centrality,
    'Closeness': closeness_centrality,
}).head(8)

centrality_df.plot(kind='barh', ax=ax, width=0.8)
ax.set_xlabel('Centrality Score')
ax.set_title('Top 8 Nodes - Centrality Comparison')
ax.legend(loc='lower right')
ax.grid(True, alpha=0.3, axis='x')

# 4. Degree Distribution
ax = axes[1, 1]
degree_sequence = sorted([d for n, d in G.degree()], reverse=True)
degree_count = Counter(degree_sequence)
degrees_unique = sorted(degree_count.keys())
counts = [degree_count[d] for d in degrees_unique]

ax.bar(degrees_unique, counts, color='steelblue', edgecolor='black', alpha=0.7)
ax.set_xlabel('Degree')
ax.set_ylabel('Count')
ax.set_title('Degree Distribution')
ax.grid(True, alpha=0.3, axis='y')

plt.tight_layout()
plt.show()

# 7. Path Analysis
print(f"\n7. Path Analysis:")
try:
    shortest_path = nx.shortest_path_length(G, 'Alice', 'Jack')
    print(f"Shortest path from Alice to Jack: {shortest_path}")
except nx.NetworkXNoPath:
    print("No path exists between nodes")

# 8. Connectivity Analysis
print(f"\n8. Connectivity Analysis:")
print(f"Is connected: {nx.is_connected(G)}")
num_components = nx.number_connected_components(G)
print(f"Number of connected components: {num_components}")

# 9. Similarity Measures
def jaccard_similarity(node1, node2):
    neighbors1 = set(G.neighbors(node1)) | {node1}
    neighbors2 = set(G.neighbors(node2)) | {node2}
    intersection = len(neighbors1 & neighbors2)
    union = len(neighbors1 | neighbors2)
    return intersection / union if union > 0 else 0

print(f"\n9. Node Similarity (Jaccard):")
print(f"Alice & Bob: {jaccard_similarity('Alice', 'Bob'):.3f}")
print(f"Alice & Jack: {jaccard_similarity('Alice', 'Jack'):.3f}")

# 10. Influence Score (Combination of metrics)
influence_score = {}
for node in G.nodes():
    score = (degree_centrality[node] * 0.4 +
             betweenness_centrality[node] * 0.3 +
             closeness_centrality[node] * 0.3)
    influence_score[node] = score

print(f"\n10. Influence Score (Top 5):")
for node, score in sorted(influence_score.items(), key=lambda x: x[1], reverse=True)[:5]:
    print(f"  {node}: {score:.3f}")

# Summary
print("\n" + "="*50)
print("NETWORK ANALYSIS SUMMARY")
print("="*50)
print(f"Most influential: {max(influence_score, key=influence_score.get)}")
print(f"Most connected: {max(degree_centrality, key=degree_centrality.get)}")
print(f"Network bottleneck: {max(betweenness_centrality, key=betweenness_centrality.get)}")
print(f"Closest to all: {max(closeness_centrality, key=closeness_centrality.get)}")
print("="*50)

Centrality Measures

  • Degree: Direct connections only
  • Betweenness: Bridges between groups
  • Closeness: Access to network
  • Eigenvector: Connected to important nodes
  • PageRank: Random walk probability

Community Detection

  • Modularity Optimization: Find dense groups
  • Louvain Algorithm: Hierarchical communities
  • K-clique: Overlapping communities
  • Spectral: Eigenvalue-based

Applications

  • Social network analysis
  • Organizational structures
  • Citation networks
  • Recommendation networks
  • Supply chain analysis

Deliverables

  • Network visualization
  • Centrality analysis
  • Community detection results
  • Connectivity metrics
  • Influence rankings
  • Key node identification
  • Network statistics summary

GitHub Repository

aj-geddes/useful-ai-prompts
Path: skills/network-analysis

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

cloudflare-turnstile

Meta

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

View skill