← Back to Skills

performance-analysis

natea
Updated Today
6 views
1
2
1
View on GitHub
Otherperformancebottleneckoptimizationprofilingmetricsanalysis

About

This skill provides comprehensive performance analysis for Claude Flow swarms, detecting bottlenecks and profiling operations. It generates detailed reports and offers AI-powered optimization recommendations to improve swarm performance. Use it when you need to monitor, analyze, and optimize the efficiency of your Claude Flow implementations.

Documentation

Performance Analysis Skill

Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.

Overview

This skill consolidates all performance analysis capabilities:

  • Bottleneck Detection: Identify performance bottlenecks across communication, processing, memory, and network
  • Performance Profiling: Real-time monitoring and historical analysis of swarm operations
  • Report Generation: Create comprehensive performance reports in multiple formats
  • Optimization Recommendations: AI-powered suggestions for improving performance

Quick Start

Basic Bottleneck Detection

npx claude-flow bottleneck detect

Generate Performance Report

npx claude-flow analysis performance-report --format html --include-metrics

Analyze and Auto-Fix

npx claude-flow bottleneck detect --fix --threshold 15

Core Capabilities

1. Bottleneck Detection

Command Syntax

npx claude-flow bottleneck detect [options]

Options

  • --swarm-id, -s <id> - Analyze specific swarm (default: current)
  • --time-range, -t <range> - Analysis period: 1h, 24h, 7d, all (default: 1h)
  • --threshold <percent> - Bottleneck threshold percentage (default: 20)
  • --export, -e <file> - Export analysis to file
  • --fix - Apply automatic optimizations

Usage Examples

# Basic detection for current swarm
npx claude-flow bottleneck detect

# Analyze specific swarm over 24 hours
npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h

# Export detailed analysis
npx claude-flow bottleneck detect -t 24h -e bottlenecks.json

# Auto-fix detected issues
npx claude-flow bottleneck detect --fix --threshold 15

# Low threshold for sensitive detection
npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json

Metrics Analyzed

Communication Bottlenecks:

  • Message queue delays
  • Agent response times
  • Coordination overhead
  • Memory access patterns
  • Inter-agent communication latency

Processing Bottlenecks:

  • Task completion times
  • Agent utilization rates
  • Parallel execution efficiency
  • Resource contention
  • CPU/memory usage patterns

Memory Bottlenecks:

  • Cache hit rates
  • Memory access patterns
  • Storage I/O performance
  • Neural pattern loading times
  • Memory allocation efficiency

Network Bottlenecks:

  • API call latency
  • MCP communication delays
  • External service timeouts
  • Concurrent request limits
  • Network throughput issues

Output Format

πŸ” Bottleneck Analysis Report
━━━━━━━━━━━━━━━━━━━━━━━━━━━

πŸ“Š Summary
β”œβ”€β”€ Time Range: Last 1 hour
β”œβ”€β”€ Agents Analyzed: 6
β”œβ”€β”€ Tasks Processed: 42
└── Critical Issues: 2

🚨 Critical Bottlenecks
1. Agent Communication (35% impact)
   └── coordinator β†’ coder-1 messages delayed by 2.3s avg

2. Memory Access (28% impact)
   └── Neural pattern loading taking 1.8s per access

⚠️ Warning Bottlenecks
1. Task Queue (18% impact)
   └── 5 tasks waiting > 10s for assignment

πŸ’‘ Recommendations
1. Switch to hierarchical topology (est. 40% improvement)
2. Enable memory caching (est. 25% improvement)
3. Increase agent concurrency to 8 (est. 20% improvement)

βœ… Quick Fixes Available
Run with --fix to apply:
- Enable smart caching
- Optimize message routing
- Adjust agent priorities

2. Performance Profiling

Real-time Detection

Automatic analysis during task execution:

  • Execution time vs. complexity
  • Agent utilization rates
  • Resource constraints
  • Operation patterns

Common Bottleneck Patterns

Time Bottlenecks:

  • Tasks taking > 5 minutes
  • Sequential operations that could parallelize
  • Redundant file operations
  • Inefficient algorithm implementations

Coordination Bottlenecks:

  • Single agent for complex tasks
  • Unbalanced agent workloads
  • Poor topology selection
  • Excessive synchronization points

Resource Bottlenecks:

  • High operation count (> 100)
  • Memory constraints
  • I/O limitations
  • Thread pool saturation

MCP Integration

// Check for bottlenecks in Claude Code
mcp__claude-flow__bottleneck_detect({
  timeRange: "1h",
  threshold: 20,
  autoFix: false
})

// Get detailed task results with bottleneck analysis
mcp__claude-flow__task_results({
  taskId: "task-123",
  format: "detailed"
})

Result Format:

{
  "bottlenecks": [
    {
      "type": "coordination",
      "severity": "high",
      "description": "Single agent used for complex task",
      "recommendation": "Spawn specialized agents for parallel work",
      "impact": "35%",
      "affectedComponents": ["coordinator", "coder-1"]
    }
  ],
  "improvements": [
    {
      "area": "execution_time",
      "suggestion": "Use parallel task execution",
      "expectedImprovement": "30-50% time reduction",
      "implementationSteps": [
        "Split task into smaller units",
        "Spawn 3-4 specialized agents",
        "Use mesh topology for coordination"
      ]
    }
  ],
  "metrics": {
    "avgExecutionTime": "142s",
    "agentUtilization": "67%",
    "cacheHitRate": "82%",
    "parallelizationFactor": 1.2
  }
}

3. Report Generation

Command Syntax

npx claude-flow analysis performance-report [options]

Options

  • --format <type> - Report format: json, html, markdown (default: markdown)
  • --include-metrics - Include detailed metrics and charts
  • --compare <id> - Compare with previous swarm
  • --time-range <range> - Analysis period: 1h, 24h, 7d, 30d, all
  • --output <file> - Output file path
  • --sections <list> - Comma-separated sections to include

Report Sections

  1. Executive Summary

    • Overall performance score
    • Key metrics overview
    • Critical findings
  2. Swarm Overview

    • Topology configuration
    • Agent distribution
    • Task statistics
  3. Performance Metrics

    • Execution times
    • Throughput analysis
    • Resource utilization
    • Latency breakdown
  4. Bottleneck Analysis

    • Identified bottlenecks
    • Impact assessment
    • Optimization priorities
  5. Comparative Analysis (when --compare used)

    • Performance trends
    • Improvement metrics
    • Regression detection
  6. Recommendations

    • Prioritized action items
    • Expected improvements
    • Implementation guidance

Usage Examples

# Generate HTML report with all metrics
npx claude-flow analysis performance-report --format html --include-metrics

# Compare current swarm with previous
npx claude-flow analysis performance-report --compare swarm-123 --format markdown

# Custom output with specific sections
npx claude-flow analysis performance-report \
  --sections summary,metrics,recommendations \
  --output reports/perf-analysis.html \
  --format html

# Weekly performance report
npx claude-flow analysis performance-report \
  --time-range 7d \
  --include-metrics \
  --format markdown \
  --output docs/weekly-performance.md

# JSON format for CI/CD integration
npx claude-flow analysis performance-report \
  --format json \
  --output build/performance.json

Sample Markdown Report

# Performance Analysis Report

## Executive Summary
- **Overall Score**: 87/100
- **Analysis Period**: Last 24 hours
- **Swarms Analyzed**: 3
- **Critical Issues**: 1

## Key Metrics
| Metric | Value | Trend | Target |
|--------|-------|-------|--------|
| Avg Task Time | 42s | ↓ 12% | 35s |
| Agent Utilization | 78% | ↑ 5% | 85% |
| Cache Hit Rate | 91% | β†’ | 90% |
| Parallel Efficiency | 2.3x | ↑ 0.4x | 2.5x |

## Bottleneck Analysis
### Critical
1. **Agent Communication Delay** (Impact: 35%)
   - Coordinator β†’ Coder messages delayed by 2.3s avg
   - **Fix**: Switch to hierarchical topology

### Warnings
1. **Memory Access Pattern** (Impact: 18%)
   - Neural pattern loading: 1.8s per access
   - **Fix**: Enable memory caching

## Recommendations
1. **High Priority**: Switch to hierarchical topology (40% improvement)
2. **Medium Priority**: Enable memory caching (25% improvement)
3. **Low Priority**: Increase agent concurrency to 8 (20% improvement)

4. Optimization Recommendations

Automatic Fixes

When using --fix, the following optimizations may be applied:

1. Topology Optimization

  • Switch to more efficient topology (mesh β†’ hierarchical)
  • Adjust communication patterns
  • Reduce coordination overhead
  • Optimize message routing

2. Caching Enhancement

  • Enable memory caching
  • Optimize cache strategies
  • Preload common patterns
  • Implement cache warming

3. Concurrency Tuning

  • Adjust agent counts
  • Optimize parallel execution
  • Balance workload distribution
  • Implement load balancing

4. Priority Adjustment

  • Reorder task queues
  • Prioritize critical paths
  • Reduce wait times
  • Implement fair scheduling

5. Resource Optimization

  • Optimize memory usage
  • Reduce I/O operations
  • Batch API calls
  • Implement connection pooling

Performance Impact

Typical improvements after bottleneck resolution:

  • Communication: 30-50% faster message delivery
  • Processing: 20-40% reduced task completion time
  • Memory: 40-60% fewer cache misses
  • Network: 25-45% reduced API latency
  • Overall: 25-45% total performance improvement

Advanced Usage

Continuous Monitoring

# Monitor performance in real-time
npx claude-flow swarm monitor --interval 5

# Generate hourly reports
while true; do
  npx claude-flow analysis performance-report \
    --format json \
    --output logs/perf-$(date +%Y%m%d-%H%M).json
  sleep 3600
done

CI/CD Integration

# .github/workflows/performance.yml
name: Performance Analysis
on: [push, pull_request]

jobs:
  analyze:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Run Performance Analysis
        run: |
          npx claude-flow analysis performance-report \
            --format json \
            --output performance.json
      - name: Check Performance Thresholds
        run: |
          npx claude-flow bottleneck detect \
            --threshold 15 \
            --export bottlenecks.json
      - name: Upload Reports
        uses: actions/upload-artifact@v2
        with:
          name: performance-reports
          path: |
            performance.json
            bottlenecks.json

Custom Analysis Scripts

// scripts/analyze-performance.js
const { exec } = require('child_process');
const fs = require('fs');

async function analyzePerformance() {
  // Run bottleneck detection
  const bottlenecks = await runCommand(
    'npx claude-flow bottleneck detect --format json'
  );

  // Generate performance report
  const report = await runCommand(
    'npx claude-flow analysis performance-report --format json'
  );

  // Analyze results
  const analysis = {
    bottlenecks: JSON.parse(bottlenecks),
    performance: JSON.parse(report),
    timestamp: new Date().toISOString()
  };

  // Save combined analysis
  fs.writeFileSync(
    'analysis/combined-report.json',
    JSON.stringify(analysis, null, 2)
  );

  // Generate alerts if needed
  if (analysis.bottlenecks.critical.length > 0) {
    console.error('CRITICAL: Performance bottlenecks detected!');
    process.exit(1);
  }
}

function runCommand(cmd) {
  return new Promise((resolve, reject) => {
    exec(cmd, (error, stdout, stderr) => {
      if (error) reject(error);
      else resolve(stdout);
    });
  });
}

analyzePerformance().catch(console.error);

Best Practices

1. Regular Analysis

  • Run bottleneck detection after major changes
  • Generate weekly performance reports
  • Monitor trends over time
  • Set up automated alerts

2. Threshold Tuning

  • Start with default threshold (20%)
  • Lower for production systems (10-15%)
  • Higher for development (25-30%)
  • Adjust based on requirements

3. Fix Strategy

  • Always review before applying --fix
  • Test fixes in development first
  • Apply fixes incrementally
  • Monitor impact after changes

4. Report Integration

  • Include in documentation
  • Share with team regularly
  • Track improvements over time
  • Use for capacity planning

5. Continuous Optimization

  • Learn from each analysis
  • Build performance budgets
  • Establish baselines
  • Set improvement goals

Troubleshooting

Common Issues

High Memory Usage

# Analyze memory bottlenecks
npx claude-flow bottleneck detect --threshold 10

# Check cache performance
npx claude-flow cache manage --action stats

# Review memory metrics
npx claude-flow memory usage

Slow Task Execution

# Identify slow tasks
npx claude-flow task status --detailed

# Analyze coordination overhead
npx claude-flow bottleneck detect --time-range 1h

# Check agent utilization
npx claude-flow agent metrics

Poor Cache Performance

# Analyze cache hit rates
npx claude-flow analysis performance-report --sections metrics

# Review cache strategy
npx claude-flow cache manage --action analyze

# Enable cache warming
npx claude-flow bottleneck detect --fix

Integration with Other Skills

  • swarm-orchestration: Use performance data to optimize topology
  • memory-management: Improve cache strategies based on analysis
  • task-coordination: Adjust scheduling based on bottlenecks
  • neural-training: Train patterns from performance data

Related Commands

  • npx claude-flow swarm monitor - Real-time monitoring
  • npx claude-flow token usage - Token optimization analysis
  • npx claude-flow cache manage - Cache optimization
  • npx claude-flow agent metrics - Agent performance metrics
  • npx claude-flow task status - Task execution analysis

See Also


Version: 1.0.0 Last Updated: 2025-10-19 Maintainer: Claude Flow Team

Quick Install

/plugin add https://github.com/natea/fitfinder/tree/main/performance-analysis

Copy and paste this command in Claude Code to install this skill

GitHub δ»“εΊ“

natea/fitfinder
Path: .claude/skills/performance-analysis

Related Skills

deepspeed

Design

This skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.

View skill

when-optimizing-prompts-use-prompt-architect

Other

This skill provides a structured framework for developers to systematically analyze, refine, and optimize prompts for AI systems using evidence-based techniques. It helps eliminate anti-patterns and improve prompt structure, which is triggered by poor response quality or inconsistent outputs. The process includes A/B testing to validate effectiveness and produces an optimized prompt along with an analysis report.

View skill

when-optimizing-agent-learning-use-reasoningbank-intelligence

Other

This skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.

View skill

Verification & Quality Assurance

Other

This skill automatically verifies and scores the quality of code and agent outputs using a 0.95 accuracy threshold. It performs truth scoring, code correctness checks, and can instantly roll back changes that fail verification. Use it to ensure high-quality outputs and maintain codebase reliability in your development workflow.

View skill