Back to Skills

gitlab-ci-patterns

lifangda
Updated Today
15 views
11
11
View on GitHub
Metatestingautomationdesign

About

This skill helps developers build and optimize GitLab CI/CD pipelines with multi-stage workflows, caching, and distributed runners. It provides patterns for scalable automation, including automated testing, building, and deployment strategies. Use it when implementing or improving GitLab-based CI/CD, configuring runners, or setting up GitOps workflows.

Documentation

GitLab CI Patterns

Comprehensive GitLab CI/CD pipeline patterns for automated testing, building, and deployment.

Purpose

Create efficient GitLab CI pipelines with proper stage organization, caching, and deployment strategies.

When to Use

  • Automate GitLab-based CI/CD
  • Implement multi-stage pipelines
  • Configure GitLab Runners
  • Deploy to Kubernetes from GitLab
  • Implement GitOps workflows

Basic Pipeline Structure

stages:
  - build
  - test
  - deploy

variables:
  DOCKER_DRIVER: overlay2
  DOCKER_TLS_CERTDIR: "/certs"

build:
  stage: build
  image: node:20
  script:
    - npm ci
    - npm run build
  artifacts:
    paths:
      - dist/
    expire_in: 1 hour
  cache:
    key: ${CI_COMMIT_REF_SLUG}
    paths:
      - node_modules/

test:
  stage: test
  image: node:20
  script:
    - npm ci
    - npm run lint
    - npm test
  coverage: '/Lines\s*:\s*(\d+\.\d+)%/'
  artifacts:
    reports:
      coverage_report:
        coverage_format: cobertura
        path: coverage/cobertura-coverage.xml

deploy:
  stage: deploy
  image: bitnami/kubectl:latest
  script:
    - kubectl apply -f k8s/
    - kubectl rollout status deployment/my-app
  only:
    - main
  environment:
    name: production
    url: https://app.example.com

Docker Build and Push

build-docker:
  stage: build
  image: docker:24
  services:
    - docker:24-dind
  before_script:
    - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
  script:
    - docker build -t $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA .
    - docker build -t $CI_REGISTRY_IMAGE:latest .
    - docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
    - docker push $CI_REGISTRY_IMAGE:latest
  only:
    - main
    - tags

Multi-Environment Deployment

.deploy_template: &deploy_template
  image: bitnami/kubectl:latest
  before_script:
    - kubectl config set-cluster k8s --server="$KUBE_URL" --insecure-skip-tls-verify=true
    - kubectl config set-credentials admin --token="$KUBE_TOKEN"
    - kubectl config set-context default --cluster=k8s --user=admin
    - kubectl config use-context default

deploy:staging:
  <<: *deploy_template
  stage: deploy
  script:
    - kubectl apply -f k8s/ -n staging
    - kubectl rollout status deployment/my-app -n staging
  environment:
    name: staging
    url: https://staging.example.com
  only:
    - develop

deploy:production:
  <<: *deploy_template
  stage: deploy
  script:
    - kubectl apply -f k8s/ -n production
    - kubectl rollout status deployment/my-app -n production
  environment:
    name: production
    url: https://app.example.com
  when: manual
  only:
    - main

Terraform Pipeline

stages:
  - validate
  - plan
  - apply

variables:
  TF_ROOT: ${CI_PROJECT_DIR}/terraform
  TF_VERSION: "1.6.0"

before_script:
  - cd ${TF_ROOT}
  - terraform --version

validate:
  stage: validate
  image: hashicorp/terraform:${TF_VERSION}
  script:
    - terraform init -backend=false
    - terraform validate
    - terraform fmt -check

plan:
  stage: plan
  image: hashicorp/terraform:${TF_VERSION}
  script:
    - terraform init
    - terraform plan -out=tfplan
  artifacts:
    paths:
      - ${TF_ROOT}/tfplan
    expire_in: 1 day

apply:
  stage: apply
  image: hashicorp/terraform:${TF_VERSION}
  script:
    - terraform init
    - terraform apply -auto-approve tfplan
  dependencies:
    - plan
  when: manual
  only:
    - main

Security Scanning

include:
  - template: Security/SAST.gitlab-ci.yml
  - template: Security/Dependency-Scanning.gitlab-ci.yml
  - template: Security/Container-Scanning.gitlab-ci.yml

trivy-scan:
  stage: test
  image: aquasec/trivy:latest
  script:
    - trivy image --exit-code 1 --severity HIGH,CRITICAL $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
  allow_failure: true

Caching Strategies

# Cache node_modules
build:
  cache:
    key: ${CI_COMMIT_REF_SLUG}
    paths:
      - node_modules/
    policy: pull-push

# Global cache
cache:
  key: ${CI_COMMIT_REF_SLUG}
  paths:
    - .cache/
    - vendor/

# Separate cache per job
job1:
  cache:
    key: job1-cache
    paths:
      - build/

job2:
  cache:
    key: job2-cache
    paths:
      - dist/

Dynamic Child Pipelines

generate-pipeline:
  stage: build
  script:
    - python generate_pipeline.py > child-pipeline.yml
  artifacts:
    paths:
      - child-pipeline.yml

trigger-child:
  stage: deploy
  trigger:
    include:
      - artifact: child-pipeline.yml
        job: generate-pipeline
    strategy: depend

Reference Files

  • assets/gitlab-ci.yml.template - Complete pipeline template
  • references/pipeline-stages.md - Stage organization patterns

Best Practices

  1. Use specific image tags (node:20, not node:latest)
  2. Cache dependencies appropriately
  3. Use artifacts for build outputs
  4. Implement manual gates for production
  5. Use environments for deployment tracking
  6. Enable merge request pipelines
  7. Use pipeline schedules for recurring jobs
  8. Implement security scanning
  9. Use CI/CD variables for secrets
  10. Monitor pipeline performance

Related Skills

  • github-actions-templates - For GitHub Actions
  • deployment-pipeline-design - For architecture
  • secrets-management - For secrets handling

Quick Install

/plugin add https://github.com/lifangda/claude-plugins/tree/main/gitlab-ci-patterns

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

lifangda/claude-plugins
Path: cli-tool/skills-library/cicd-automation/gitlab-ci-patterns

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

go-test

Meta

The go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.

View skill