gitlab-ci-patterns
About
This skill helps developers build and optimize GitLab CI/CD pipelines with multi-stage workflows, caching, and distributed runners. It provides patterns for scalable automation, including automated testing, building, and deployment strategies. Use it when implementing or improving GitLab-based CI/CD, configuring runners, or setting up GitOps workflows.
Documentation
GitLab CI Patterns
Comprehensive GitLab CI/CD pipeline patterns for automated testing, building, and deployment.
Purpose
Create efficient GitLab CI pipelines with proper stage organization, caching, and deployment strategies.
When to Use
- Automate GitLab-based CI/CD
- Implement multi-stage pipelines
- Configure GitLab Runners
- Deploy to Kubernetes from GitLab
- Implement GitOps workflows
Basic Pipeline Structure
stages:
- build
- test
- deploy
variables:
DOCKER_DRIVER: overlay2
DOCKER_TLS_CERTDIR: "/certs"
build:
stage: build
image: node:20
script:
- npm ci
- npm run build
artifacts:
paths:
- dist/
expire_in: 1 hour
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- node_modules/
test:
stage: test
image: node:20
script:
- npm ci
- npm run lint
- npm test
coverage: '/Lines\s*:\s*(\d+\.\d+)%/'
artifacts:
reports:
coverage_report:
coverage_format: cobertura
path: coverage/cobertura-coverage.xml
deploy:
stage: deploy
image: bitnami/kubectl:latest
script:
- kubectl apply -f k8s/
- kubectl rollout status deployment/my-app
only:
- main
environment:
name: production
url: https://app.example.com
Docker Build and Push
build-docker:
stage: build
image: docker:24
services:
- docker:24-dind
before_script:
- docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
script:
- docker build -t $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA .
- docker build -t $CI_REGISTRY_IMAGE:latest .
- docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
- docker push $CI_REGISTRY_IMAGE:latest
only:
- main
- tags
Multi-Environment Deployment
.deploy_template: &deploy_template
image: bitnami/kubectl:latest
before_script:
- kubectl config set-cluster k8s --server="$KUBE_URL" --insecure-skip-tls-verify=true
- kubectl config set-credentials admin --token="$KUBE_TOKEN"
- kubectl config set-context default --cluster=k8s --user=admin
- kubectl config use-context default
deploy:staging:
<<: *deploy_template
stage: deploy
script:
- kubectl apply -f k8s/ -n staging
- kubectl rollout status deployment/my-app -n staging
environment:
name: staging
url: https://staging.example.com
only:
- develop
deploy:production:
<<: *deploy_template
stage: deploy
script:
- kubectl apply -f k8s/ -n production
- kubectl rollout status deployment/my-app -n production
environment:
name: production
url: https://app.example.com
when: manual
only:
- main
Terraform Pipeline
stages:
- validate
- plan
- apply
variables:
TF_ROOT: ${CI_PROJECT_DIR}/terraform
TF_VERSION: "1.6.0"
before_script:
- cd ${TF_ROOT}
- terraform --version
validate:
stage: validate
image: hashicorp/terraform:${TF_VERSION}
script:
- terraform init -backend=false
- terraform validate
- terraform fmt -check
plan:
stage: plan
image: hashicorp/terraform:${TF_VERSION}
script:
- terraform init
- terraform plan -out=tfplan
artifacts:
paths:
- ${TF_ROOT}/tfplan
expire_in: 1 day
apply:
stage: apply
image: hashicorp/terraform:${TF_VERSION}
script:
- terraform init
- terraform apply -auto-approve tfplan
dependencies:
- plan
when: manual
only:
- main
Security Scanning
include:
- template: Security/SAST.gitlab-ci.yml
- template: Security/Dependency-Scanning.gitlab-ci.yml
- template: Security/Container-Scanning.gitlab-ci.yml
trivy-scan:
stage: test
image: aquasec/trivy:latest
script:
- trivy image --exit-code 1 --severity HIGH,CRITICAL $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
allow_failure: true
Caching Strategies
# Cache node_modules
build:
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- node_modules/
policy: pull-push
# Global cache
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- .cache/
- vendor/
# Separate cache per job
job1:
cache:
key: job1-cache
paths:
- build/
job2:
cache:
key: job2-cache
paths:
- dist/
Dynamic Child Pipelines
generate-pipeline:
stage: build
script:
- python generate_pipeline.py > child-pipeline.yml
artifacts:
paths:
- child-pipeline.yml
trigger-child:
stage: deploy
trigger:
include:
- artifact: child-pipeline.yml
job: generate-pipeline
strategy: depend
Reference Files
assets/gitlab-ci.yml.template- Complete pipeline templatereferences/pipeline-stages.md- Stage organization patterns
Best Practices
- Use specific image tags (node:20, not node:latest)
- Cache dependencies appropriately
- Use artifacts for build outputs
- Implement manual gates for production
- Use environments for deployment tracking
- Enable merge request pipelines
- Use pipeline schedules for recurring jobs
- Implement security scanning
- Use CI/CD variables for secrets
- Monitor pipeline performance
Related Skills
github-actions-templates- For GitHub Actionsdeployment-pipeline-design- For architecturesecrets-management- For secrets handling
Quick Install
/plugin add https://github.com/lifangda/claude-plugins/tree/main/gitlab-ci-patternsCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
