Data Visualization
About
This Claude skill generates professional data visualizations using matplotlib and seaborn for exploratory analysis and stakeholder presentations. It covers essential chart types including distributions, relationships, comparisons, and multivariate plots while following data visualization best practices. Developers can use it to quickly create clear, effective visualizations that communicate insights from their data.
Quick Install
Claude Code
Recommended/plugin add https://github.com/aj-geddes/useful-ai-promptsgit clone https://github.com/aj-geddes/useful-ai-prompts.git ~/.claude/skills/Data VisualizationCopy and paste this command in Claude Code to install this skill
Documentation
Data Visualization
Effective data visualization transforms complex data into clear, compelling visual representations that reveal patterns, trends, and insights for storytelling and decision-making.
Visualization Types
- Distributions: Histograms, KDE, violin plots
- Relationships: Scatter plots, line plots, heatmaps
- Comparisons: Bar charts, box plots, ridge plots
- Compositions: Pie charts, stacked bars, treemaps
- Temporal: Line plots, area charts, time series
- Multivariate: Pair plots, correlation heatmaps
Design Principles
- Choose appropriate chart type for data
- Minimize ink-to-data ratio
- Use color purposefully
- Label clearly and completely
- Maintain consistent scales
- Consider accessibility
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.gridspec import GridSpec
# Set style
sns.set_style("whitegrid")
plt.rcParams['figure.figsize'] = (12, 6)
# Generate sample data
np.random.seed(42)
n = 500
data = pd.DataFrame({
'age': np.random.uniform(20, 70, n),
'income': np.random.exponential(50000, n),
'education_years': np.random.uniform(12, 20, n),
'category': np.random.choice(['A', 'B', 'C'], n),
'region': np.random.choice(['North', 'South', 'East', 'West'], n),
'satisfaction': np.random.uniform(1, 5, n),
'purchased': np.random.choice([0, 1], n),
})
print(data.head())
# 1. Distribution Plots
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Histogram
axes[0, 0].hist(data['age'], bins=30, color='skyblue', edgecolor='black')
axes[0, 0].set_title('Age Distribution (Histogram)')
axes[0, 0].set_xlabel('Age')
axes[0, 0].set_ylabel('Frequency')
# KDE plot
data['income'].plot(kind='kde', ax=axes[0, 1], color='green', linewidth=2)
axes[0, 1].set_title('Income Distribution (KDE)')
axes[0, 1].set_xlabel('Income')
# Box plot
sns.boxplot(data=data, y='satisfaction', x='category', ax=axes[1, 0], palette='Set2')
axes[1, 0].set_title('Satisfaction by Category (Box Plot)')
# Violin plot
sns.violinplot(data=data, y='age', x='category', ax=axes[1, 1], palette='Set2')
axes[1, 1].set_title('Age by Category (Violin Plot)')
plt.tight_layout()
plt.show()
# 2. Relationship Plots
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Scatter plot
axes[0, 0].scatter(data['age'], data['income'], alpha=0.5, s=30)
axes[0, 0].set_title('Age vs Income (Scatter Plot)')
axes[0, 0].set_xlabel('Age')
axes[0, 0].set_ylabel('Income')
# Scatter with regression line
sns.regplot(x='age', y='income', data=data, ax=axes[0, 1], scatter_kws={'alpha': 0.5})
axes[0, 1].set_title('Age vs Income (with Regression Line)')
# Joint plot alternative
ax_hex = axes[1, 0]
hexbin = ax_hex.hexbin(data['age'], data['income'], gridsize=15, cmap='YlOrRd')
ax_hex.set_title('Age vs Income (Hex Bin)')
ax_hex.set_xlabel('Age')
ax_hex.set_ylabel('Income')
# Bubble plot
scatter = axes[1, 1].scatter(
data['age'], data['income'], s=data['satisfaction']*50,
c=data['satisfaction'], cmap='viridis', alpha=0.6, edgecolors='black'
)
axes[1, 1].set_title('Age vs Income (Bubble Plot)')
axes[1, 1].set_xlabel('Age')
axes[1, 1].set_ylabel('Income')
plt.colorbar(scatter, ax=axes[1, 1], label='Satisfaction')
plt.tight_layout()
plt.show()
# 3. Comparison Plots
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Bar plot
category_counts = data['category'].value_counts()
axes[0, 0].bar(category_counts.index, category_counts.values, color='skyblue', edgecolor='black')
axes[0, 0].set_title('Category Distribution (Bar Chart)')
axes[0, 0].set_ylabel('Count')
# Grouped bar plot
grouped_data = data.groupby(['category', 'region']).size().unstack()
grouped_data.plot(kind='bar', ax=axes[0, 1], edgecolor='black')
axes[0, 1].set_title('Category by Region (Grouped Bar)')
axes[0, 1].set_ylabel('Count')
axes[0, 1].legend(title='Region')
# Stacked bar plot
grouped_data.plot(kind='bar', stacked=True, ax=axes[1, 0], edgecolor='black')
axes[1, 0].set_title('Category by Region (Stacked Bar)')
axes[1, 0].set_ylabel('Count')
# Horizontal bar plot
region_counts = data['region'].value_counts()
axes[1, 1].barh(region_counts.index, region_counts.values, color='lightcoral', edgecolor='black')
axes[1, 1].set_title('Region Distribution (Horizontal Bar)')
axes[1, 1].set_xlabel('Count')
plt.tight_layout()
plt.show()
# 4. Correlation and Heatmaps
numeric_cols = data[['age', 'income', 'education_years', 'satisfaction']].corr()
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Correlation heatmap
sns.heatmap(numeric_cols, annot=True, fmt='.2f', cmap='coolwarm', center=0,
square=True, ax=axes[0], cbar_kws={'label': 'Correlation'})
axes[0].set_title('Correlation Matrix Heatmap')
# Clustermap alternative
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.spatial.distance import pdist, squareform
# Create a simpler heatmap for category averages
category_avg = data.groupby('category')[['age', 'income', 'education_years', 'satisfaction']].mean()
sns.heatmap(category_avg.T, annot=True, fmt='.1f', cmap='YlGnBu', ax=axes[1],
cbar_kws={'label': 'Average Value'})
axes[1].set_title('Average Values by Category')
plt.tight_layout()
plt.show()
# 5. Pair Plot
pair_cols = ['age', 'income', 'education_years', 'satisfaction']
plt.figure(figsize=(12, 10))
pair_plot = sns.pairplot(data[pair_cols], diag_kind='hist', corner=False)
pair_plot.fig.suptitle('Pair Plot Matrix', y=1.00)
plt.show()
# 6. Multi-dimensional Visualization
fig = plt.figure(figsize=(14, 6))
gs = GridSpec(2, 3, figure=fig)
# Subplots with different aspects
ax1 = fig.add_subplot(gs[0, 0])
ax1.scatter(data['age'], data['income'], c=data['satisfaction'], cmap='viridis', alpha=0.6)
ax1.set_title('Age vs Income (colored by Satisfaction)')
ax1.set_xlabel('Age')
ax1.set_ylabel('Income')
ax2 = fig.add_subplot(gs[0, 1])
for cat in data['category'].unique():
subset = data[data['category'] == cat]
ax2.scatter(subset['age'], subset['income'], label=cat, alpha=0.6)
ax2.set_title('Age vs Income (by Category)')
ax2.set_xlabel('Age')
ax2.set_ylabel('Income')
ax2.legend()
ax3 = fig.add_subplot(gs[0, 2])
sns.boxplot(data=data, x='region', y='income', ax=ax3, palette='Set2')
ax3.set_title('Income Distribution by Region')
ax4 = fig.add_subplot(gs[1, 0])
data.groupby('category')['satisfaction'].mean().plot(kind='bar', ax=ax4, color='skyblue', edgecolor='black')
ax4.set_title('Average Satisfaction by Category')
ax4.set_ylabel('Satisfaction')
ax4.set_xlabel('Category')
ax5 = fig.add_subplot(gs[1, 1:])
region_category = pd.crosstab(data['region'], data['category'])
region_category.plot(kind='bar', ax=ax5, edgecolor='black')
ax5.set_title('Region vs Category Distribution')
ax5.set_ylabel('Count')
ax5.set_xlabel('Region')
ax5.legend(title='Category')
plt.tight_layout()
plt.show()
# 7. Time Series Visualization (if temporal data)
dates = pd.date_range('2023-01-01', periods=len(data))
data['date'] = dates
data['cumulative_income'] = data['income'].cumsum()
fig, axes = plt.subplots(2, 1, figsize=(12, 8))
# Line plot
axes[0].plot(data['date'], data['income'], linewidth=1, alpha=0.7, label='Income')
axes[0].fill_between(data['date'], data['income'], alpha=0.3)
axes[0].set_title('Income Over Time')
axes[0].set_ylabel('Income')
axes[0].grid(True, alpha=0.3)
axes[0].legend()
# Area plot
axes[1].plot(data['date'], data['cumulative_income'], linewidth=2, color='green')
axes[1].fill_between(data['date'], data['cumulative_income'], alpha=0.3, color='green')
axes[1].set_title('Cumulative Income Over Time')
axes[1].set_ylabel('Cumulative Income')
axes[1].set_xlabel('Date')
axes[1].grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 8. Composition Visualization
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Pie chart
category_counts = data['category'].value_counts()
colors = ['#ff9999', '#66b3ff', '#99ff99']
axes[0].pie(category_counts.values, labels=category_counts.index, autopct='%1.1f%%',
colors=colors, startangle=90)
axes[0].set_title('Category Distribution (Pie Chart)')
# Donut chart
axes[1].pie(category_counts.values, labels=category_counts.index, autopct='%1.1f%%',
colors=colors, startangle=90, wedgeprops=dict(width=0.5, edgecolor='white'))
axes[1].set_title('Category Distribution (Donut Chart)')
plt.tight_layout()
plt.show()
# 9. Dashboard-style Visualization
fig = plt.figure(figsize=(16, 10))
gs = GridSpec(3, 3, figure=fig, hspace=0.3, wspace=0.3)
# Key metrics
ax_metric = fig.add_subplot(gs[0, :])
ax_metric.axis('off')
metrics_text = f"""
Average Age: {data['age'].mean():.1f} | Average Income: ${data['income'].mean():.0f} |
Average Satisfaction: {data['satisfaction'].mean():.2f} | Purchase Rate: {(data['purchased'].mean()*100):.1f}%
"""
ax_metric.text(0.5, 0.5, metrics_text, ha='center', va='center', fontsize=12,
bbox=dict(boxstyle='round', facecolor='lightblue', alpha=0.7))
# Subplots
ax1 = fig.add_subplot(gs[1, 0])
data['age'].hist(bins=20, ax=ax1, color='skyblue', edgecolor='black')
ax1.set_title('Age Distribution')
ax2 = fig.add_subplot(gs[1, 1])
category_counts.plot(kind='bar', ax=ax2, color='lightcoral', edgecolor='black')
ax2.set_title('Category Counts')
ax3 = fig.add_subplot(gs[1, 2])
data.groupby('category')['satisfaction'].mean().plot(kind='bar', ax=ax3, color='lightgreen', edgecolor='black')
ax3.set_title('Avg Satisfaction by Category')
ax4 = fig.add_subplot(gs[2, :2])
sns.boxplot(data=data, x='region', y='income', ax=ax4, palette='Set2')
ax4.set_title('Income by Region')
ax5 = fig.add_subplot(gs[2, 2])
data['satisfaction'].value_counts().sort_index().plot(kind='bar', ax=ax5, color='orange', edgecolor='black')
ax5.set_title('Satisfaction Scores')
plt.suptitle('Data Analytics Dashboard', fontsize=16, fontweight='bold', y=0.995)
plt.show()
print("Visualization examples completed!")
Visualization Best Practices
- Choose chart type based on data type and question
- Use consistent color schemes
- Label axes clearly with units
- Include title and legend
- Avoid 3D charts when 2D suffices
- Make fonts large and readable
- Consider colorblind-friendly palettes
Common Chart Types
- Bar charts: Categorical comparisons
- Line plots: Trends over time
- Scatter plots: Relationships between variables
- Histograms: Distributions
- Heatmaps: Matrix data
- Box plots: Distribution with quartiles
Deliverables
- Exploratory visualizations
- Publication-ready charts
- Interactive dashboard mockups
- Statistical plots with annotations
- Trend analysis visualizations
- Comparative analysis charts
- Summary infographics
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
cloudflare-turnstile
MetaThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
