Back to Skills

when-developing-ml-models-use-ml-expert

DNYoussef
Updated Yesterday
3 views
0
View on GitHub
Othermltrainingdeploymentmodel-developmentneural-networks

About

This Claude Skill provides a specialized workflow for developing, training, and deploying machine learning models. It supports various architectures like CNNs and RNNs, handles the full lifecycle from training to production, and outputs trained models, metrics, and deployment packages. Use it when you need to build a new ML model, require model training, or are preparing for a production deployment.

Documentation

ML Expert - Machine Learning Model Development

Overview

Specialized workflow for ML model development, training, and deployment. Supports various architectures (CNNs, RNNs, Transformers) with distributed training capabilities.

When to Use

  • Developing new ML models
  • Training neural networks
  • Model optimization
  • Production deployment
  • Transfer learning
  • Fine-tuning existing models

Phase 1: Data Preparation (10 min)

Objective

Clean, preprocess, and prepare training data

Agent: ML-Developer

Step 1.1: Load and Analyze Data

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

# Load data
data = pd.read_csv('dataset.csv')

# Analyze
analysis = {
    'shape': data.shape,
    'columns': data.columns.tolist(),
    'dtypes': data.dtypes.to_dict(),
    'missing': data.isnull().sum().to_dict(),
    'stats': data.describe().to_dict()
}

# Store analysis
await memory.store('ml-expert/data-analysis', analysis)

Step 1.2: Data Cleaning

# Handle missing values
data = data.fillna(data.mean())

# Remove duplicates
data = data.drop_duplicates()

# Handle outliers
from scipy import stats
z_scores = np.abs(stats.zscore(data.select_dtypes(include=[np.number])))
data = data[(z_scores < 3).all(axis=1)]

# Encode categorical variables
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for col in data.select_dtypes(include=['object']).columns:
    data[col] = le.fit_transform(data[col])

Step 1.3: Split Data

# Split into train/val/test
X = data.drop('target', axis=1)
y = data['target']

X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)

# Normalize
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)

# Save preprocessed data
np.save('data/X_train.npy', X_train)
np.save('data/X_val.npy', X_val)
np.save('data/X_test.npy', X_test)

Validation Criteria

  • Data loaded successfully
  • Missing values handled
  • Train/val/test split created
  • Normalization applied

Phase 2: Model Selection (10 min)

Objective

Choose and configure model architecture

Agent: Researcher

Step 2.1: Analyze Task Type

task_analysis = {
    'type': 'classification|regression|clustering',
    'complexity': 'low|medium|high',
    'dataSize': len(data),
    'features': X.shape[1],
    'classes': len(np.unique(y)) if classification else None
}

# Recommend architecture
if task_analysis['type'] == 'classification' and task_analysis['features'] > 100:
    recommended_architecture = 'deep_neural_network'
elif task_analysis['type'] == 'regression' and task_analysis['dataSize'] < 10000:
    recommended_architecture = 'random_forest'
# ... more logic

Step 2.2: Define Architecture

import tensorflow as tf

def create_model(architecture='dnn', input_shape, num_classes):
    if architecture == 'dnn':
        model = tf.keras.Sequential([
            tf.keras.layers.Dense(256, activation='relu', input_shape=input_shape),
            tf.keras.layers.Dropout(0.3),
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dropout(0.3),
            tf.keras.layers.Dense(64, activation='relu'),
            tf.keras.layers.Dense(num_classes, activation='softmax')
        ])
    elif architecture == 'cnn':
        model = tf.keras.Sequential([
            tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape),
            tf.keras.layers.MaxPooling2D((2,2)),
            tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
            tf.keras.layers.MaxPooling2D((2,2)),
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dense(num_classes, activation='softmax')
        ])
    # ... more architectures

    return model

model = create_model('dnn', input_shape=(X_train.shape[1],), num_classes=len(np.unique(y)))
model.summary()

Step 2.3: Configure Training

training_config = {
    'optimizer': tf.keras.optimizers.Adam(learning_rate=0.001),
    'loss': 'sparse_categorical_crossentropy',
    'metrics': ['accuracy'],
    'batch_size': 32,
    'epochs': 100,
    'callbacks': [
        tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True),
        tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5),
        tf.keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True)
    ]
}

model.compile(
    optimizer=training_config['optimizer'],
    loss=training_config['loss'],
    metrics=training_config['metrics']
)

Validation Criteria

  • Task analyzed
  • Architecture selected
  • Model configured
  • Training parameters set

Phase 3: Train Model (20 min)

Objective

Execute training with monitoring

Agent: ML-Developer

Step 3.1: Start Training

# Train model
history = model.fit(
    X_train, y_train,
    validation_data=(X_val, y_val),
    batch_size=training_config['batch_size'],
    epochs=training_config['epochs'],
    callbacks=training_config['callbacks'],
    verbose=1
)

# Save training history
import json
with open('training_history.json', 'w') as f:
    json.dump({
        'loss': history.history['loss'],
        'val_loss': history.history['val_loss'],
        'accuracy': history.history['accuracy'],
        'val_accuracy': history.history['val_accuracy']
    }, f)

Step 3.2: Monitor Training

import matplotlib.pyplot as plt

# Plot training curves
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

# Loss
ax1.plot(history.history['loss'], label='Train Loss')
ax1.plot(history.history['val_loss'], label='Val Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss')
ax1.legend()
ax1.grid(True)

# Accuracy
ax2.plot(history.history['accuracy'], label='Train Accuracy')
ax2.plot(history.history['val_accuracy'], label='Val Accuracy')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Accuracy')
ax2.legend()
ax2.grid(True)

plt.savefig('training_curves.png')

Step 3.3: Distributed Training (Optional)

# Using Flow-Nexus for distributed training
from flow_nexus import DistributedTrainer

trainer = DistributedTrainer({
    'cluster_id': 'ml-training-cluster',
    'num_nodes': 4,
    'strategy': 'data_parallel'
})

# Train across multiple nodes
trainer.fit(
    model=model,
    train_data=(X_train, y_train),
    val_data=(X_val, y_val),
    config=training_config
)

Validation Criteria

  • Training completed
  • No NaN losses
  • Validation metrics improving
  • Model checkpoints saved

Phase 4: Validate Performance (10 min)

Objective

Evaluate model on test set

Agent: Tester

Step 4.1: Evaluate on Test Set

# Load best model
best_model = tf.keras.models.load_model('best_model.h5')

# Evaluate
test_loss, test_accuracy = best_model.evaluate(X_test, y_test, verbose=0)

# Predictions
y_pred = best_model.predict(X_test)
y_pred_classes = np.argmax(y_pred, axis=1)

# Detailed metrics
from sklearn.metrics import classification_report, confusion_matrix

metrics = {
    'test_loss': float(test_loss),
    'test_accuracy': float(test_accuracy),
    'classification_report': classification_report(y_test, y_pred_classes, output_dict=True),
    'confusion_matrix': confusion_matrix(y_test, y_pred_classes).tolist()
}

await memory.store('ml-expert/metrics', metrics)

Step 4.2: Generate Evaluation Report

report = f"""
# Model Evaluation Report

## Performance Metrics
- Test Loss: {test_loss:.4f}
- Test Accuracy: {test_accuracy:.4f}

## Classification Report
{classification_report(y_test, y_pred_classes)}

## Model Summary
- Architecture: {recommended_architecture}
- Parameters: {model.count_params()}
- Training Time: {training_time} seconds

## Training History
- Best Val Loss: {min(history.history['val_loss']):.4f}
- Best Val Accuracy: {max(history.history['val_accuracy']):.4f}
- Epochs Trained: {len(history.history['loss'])}
"""

with open('evaluation_report.md', 'w') as f:
    f.write(report)

Validation Criteria

  • Test accuracy > target threshold
  • No overfitting detected
  • Metrics documented
  • Report generated

Phase 5: Deploy to Production (15 min)

Objective

Package model for deployment

Agent: ML-Developer

Step 5.1: Export Model

# Save in multiple formats
model.save('model.h5')  # Keras format
model.save('model_savedmodel')  # TensorFlow SavedModel
# Convert to TFLite for mobile
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
with open('model.tflite', 'wb') as f:
    f.write(tflite_model)

# Save preprocessing pipeline
import joblib
joblib.dump(scaler, 'scaler.pkl')

Step 5.2: Create Deployment Package

import shutil
import os

# Create deployment directory
os.makedirs('deployment', exist_ok=True)

# Copy necessary files
shutil.copy('model.h5', 'deployment/')
shutil.copy('scaler.pkl', 'deployment/')
shutil.copy('evaluation_report.md', 'deployment/')

# Create inference script
inference_script = '''
import tensorflow as tf
import joblib
import numpy as np

class ModelInference:
    def __init__(self, model_path, scaler_path):
        self.model = tf.keras.models.load_model(model_path)
        self.scaler = joblib.load(scaler_path)

    def predict(self, input_data):
        # Preprocess
        scaled = self.scaler.transform(input_data)
        # Predict
        predictions = self.model.predict(scaled)
        return np.argmax(predictions, axis=1)

# Usage
inference = ModelInference('model.h5', 'scaler.pkl')
result = inference.predict(new_data)
'''

with open('deployment/inference.py', 'w') as f:
    f.write(inference_script)

Step 5.3: Generate Documentation

# Model Deployment Guide

## Files
- `model.h5`: Trained Keras model
- `scaler.pkl`: Preprocessing scaler
- `inference.py`: Inference script

## Usage
\`\`\`python
from inference import ModelInference

model = ModelInference('model.h5', 'scaler.pkl')
predictions = model.predict(new_data)
\`\`\`

## Performance
- Latency: < 50ms per prediction
- Accuracy: ${test_accuracy}
- Model Size: ${model_size}MB

## Requirements
- tensorflow>=2.0
- scikit-learn
- numpy

Validation Criteria

  • Model exported successfully
  • Deployment package created
  • Inference script tested
  • Documentation complete

Success Metrics

  • Test accuracy meets target
  • Training converged
  • No overfitting
  • Production-ready deployment

Skill Completion

Outputs:

  1. model.h5: Trained model file
  2. evaluation_report.md: Performance metrics
  3. deployment/: Production package
  4. training_history.json: Training logs

Complete when model deployed and validated.

Quick Install

/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/when-developing-ml-models-use-ml-expert

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

DNYoussef/ai-chrome-extension
Path: .claude/skills/machine-learning/when-developing-ml-models-use-ml-expert

Related Skills

production-readiness

Meta

This Claude Skill performs comprehensive pre-deployment validation to ensure code is production-ready. It runs a complete audit pipeline including security scans, performance benchmarks, and documentation checks. Use it as a final deployment gate to generate a deployment checklist and verify all production requirements are met.

View skill

flow-nexus-neural

Other

Flow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports multiple architectures including feedforward, LSTM, GAN, and transformer models, with options for custom training or pre-built templates. Use this skill when you need scalable, sandboxed environments for machine learning development and deployment.

View skill

flow-nexus-neural

Other

Flow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports custom architectures like feedforward, LSTM, GAN, and transformer networks, plus pre-built templates. Use this skill when you need to manage scalable, distributed machine learning training workflows directly from your Claude environment.

View skill

github-release-management

Other

This Claude Skill automates comprehensive GitHub release orchestration using AI swarm coordination for versioning, testing, deployment, and rollback management. It's ideal for developers needing to streamline their CI/CD pipeline with intelligent automation from changelog generation to multi-platform deployment. Use it when you want to coordinate complex release workflows across repositories with built-in rollback capabilities.

View skill