Back to Skills

gemini-image-gen

Elios-FPT
Updated Today
22 views
1
View on GitHub
Metaapidesign

About

This Claude Skill provides a guide for implementing Google Gemini API image generation using the gemini-2.5-flash-image model. It enables developers to create high-quality images from text prompts and supports image editing, multi-image composition, and iterative refinement. Use it when building text-to-image features or generating visual content for projects.

Documentation

Gemini Image Generation Skill

Generate high-quality images using Google's Gemini 2.5 Flash Image model with text prompts, image editing, and multi-image composition capabilities.

When to Use This Skill

Use this skill when you need to:

  • Generate images from text descriptions
  • Edit existing images by adding/removing elements or changing styles
  • Combine multiple source images into new compositions
  • Iteratively refine images through conversational editing
  • Create visual content for documentation, design, or creative projects

Prerequisites

API Key Setup

The skill supports both Google AI Studio and Vertex AI endpoints.

Option 1: Google AI Studio (Default)

The skill automatically detects your GEMINI_API_KEY in this order:

  1. Process environment: export GEMINI_API_KEY="your-key"
  2. Project root: .env
  3. .claude directory: .claude/.env
  4. .claude/skills directory: .claude/skills/.env
  5. Skill directory: .claude/skills/gemini-image-gen/.env

Get your API key: Visit Google AI Studio

Create .env file with:

GEMINI_API_KEY=your_api_key_here

Option 2: Vertex AI

To use Vertex AI instead:

# Enable Vertex AI
export GEMINI_USE_VERTEX=true
export VERTEX_PROJECT_ID=your-gcp-project-id
export VERTEX_LOCATION=us-central1  # Optional, defaults to us-central1

Or in .env file:

GEMINI_USE_VERTEX=true
VERTEX_PROJECT_ID=your-gcp-project-id
VERTEX_LOCATION=us-central1

Python Setup

Install required package:

pip install google-genai

Quick Start

Basic Text-to-Image Generation

from google import genai
from google.genai import types
import os

# API key detection handled automatically by helper script
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))

response = client.models.generate_content(
    model='gemini-2.5-flash-image',
    contents='A serene mountain landscape at sunset with snow-capped peaks',
    config=types.GenerateContentConfig(
        response_modalities=['image'],
        aspect_ratio='16:9'
    )
)

# Save to ./docs/assets/
for i, part in enumerate(response.candidates[0].content.parts):
    if part.inline_data:
        with open(f'./docs/assets/generated-{i}.png', 'wb') as f:
            f.write(part.inline_data.data)

Using the Helper Script

For convenience, use the provided helper script that handles API key detection and file saving:

# Generate single image
python .claude/skills/gemini-image-gen/scripts/generate.py \
  "A futuristic city with flying cars" \
  --aspect-ratio 16:9 \
  --output ./docs/assets/city.png

# Generate with specific modalities
python .claude/skills/gemini-image-gen/scripts/generate.py \
  "Modern architecture design" \
  --response-modalities image text \
  --aspect-ratio 1:1

Key Features

Aspect Ratios

RatioResolutionUse CaseToken Cost
1:11024×1024Social media, avatars1290
16:91344×768Landscapes, banners1290
9:16768×1344Mobile, portraits1290
4:31152×896Traditional media1290
3:4896×1152Vertical posters1290

Response Modalities

  • ['image']: Generate only images
  • ['text']: Generate only text descriptions
  • ['image', 'text']: Generate both images and descriptions

Image Editing

Provide existing image + text instructions to modify:

import PIL.Image

img = PIL.Image.open('original.png')
response = client.models.generate_content(
    model='gemini-2.5-flash-image',
    contents=[
        'Add a red balloon floating in the sky',
        img
    ]
)

Multi-Image Composition

Combine up to 3 source images (recommended):

img1 = PIL.Image.open('background.png')
img2 = PIL.Image.open('foreground.png')

response = client.models.generate_content(
    model='gemini-2.5-flash-image',
    contents=[
        'Combine these images into a cohesive scene',
        img1,
        img2
    ]
)

Prompt Engineering Tips

Structure effective prompts with three elements:

  1. Subject: What to generate ("a robot")
  2. Context: Environmental setting ("in a futuristic city")
  3. Style: Artistic treatment ("cyberpunk style, neon lighting")

Example: "A robot in a futuristic city, cyberpunk style with neon lighting and rain-slicked streets"

Quality modifiers:

  • Add terms like "4K", "HDR", "high-quality", "professional photography"
  • Specify camera settings: "35mm lens", "shallow depth of field", "golden hour lighting"

Text in images:

  • Limit to 25 characters maximum
  • Use up to 3 distinct phrases
  • Specify font styles: "bold sans-serif title" or "handwritten script"

See references/prompting-guide.md for comprehensive prompt engineering strategies.

Safety Settings

The model includes adjustable safety filters. Configure per-request:

config = types.GenerateContentConfig(
    response_modalities=['image'],
    safety_settings=[
        types.SafetySetting(
            category=types.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
            threshold=types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
        )
    ]
)

See references/safety-settings.md for detailed configuration options.

Output Management

All generated images should be saved to ./docs/assets/ directory:

# Create directory if needed
mkdir -p ./docs/assets

The helper script automatically saves to this location with timestamped filenames.

Model Specifications

Model: gemini-2.5-flash-image

  • Input tokens: Up to 65,536
  • Output tokens: Up to 32,768
  • Supported inputs: Text and images
  • Supported outputs: Text and images
  • Knowledge cutoff: June 2025
  • Features: Image generation, structured outputs, batch API, caching

Limitations

  • Maximum 3 input images recommended for best results
  • Text rendering works best when generated separately first
  • Does not support audio/video inputs
  • Regional restrictions on child image uploads (EEA, CH, UK)
  • Optimal language support: English, Spanish (Mexico), Japanese, Mandarin, Hindi

Error Handling

Common issues and solutions:

API key not found:

# Check environment variables
echo $GEMINI_API_KEY

# Verify .env file exists
cat .claude/skills/gemini-image-gen/.env
# or
cat .env

Safety filter blocking:

  • Review response.prompt_feedback.block_reason
  • Adjust safety settings if appropriate for your use case
  • Modify prompt to avoid triggering filters

Token limit exceeded:

  • Reduce prompt length
  • Use fewer input images
  • Simplify image editing instructions

Reference Documentation

For detailed information, see:

  • references/api-reference.md - Complete API specifications
  • references/prompting-guide.md - Advanced prompt engineering
  • references/safety-settings.md - Safety configuration details
  • references/code-examples.md - Additional implementation examples

Resources

Quick Install

/plugin add https://github.com/Elios-FPT/EliosCodePracticeService/tree/main/gemini-image-gen

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

Elios-FPT/EliosCodePracticeService
Path: .claude/skills/gemini-image-gen

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaindex

Meta

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

View skill

business-rule-documentation

Meta

This skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.

View skill