Back to Skills

flow-nexus-swarm

natea
Updated Today
8 views
1
2
1
View on GitHub
Otherswarmworkflowcloudagentsautomationmessage-queue

About

Flow Nexus Swarm enables cloud-based deployment and management of AI agent swarms with event-driven workflow automation. It supports multiple swarm topologies and message queue processing for intelligent agent coordination. Use this skill when you need to orchestrate complex multi-agent workflows in a cloud environment.

Documentation

Flow Nexus Swarm & Workflow Orchestration

Deploy and manage cloud-based AI agent swarms with event-driven workflow automation, message queue processing, and intelligent agent coordination.

📋 Table of Contents

  1. Overview
  2. Swarm Management
  3. Workflow Automation
  4. Agent Orchestration
  5. Templates & Patterns
  6. Advanced Features
  7. Best Practices

Overview

Flow Nexus provides cloud-based orchestration for AI agent swarms with:

  • Multi-topology Support: Hierarchical, mesh, ring, and star architectures
  • Event-driven Workflows: Message queue processing with async execution
  • Template Library: Pre-built swarm configurations for common use cases
  • Intelligent Agent Assignment: Vector similarity matching for optimal agent selection
  • Real-time Monitoring: Comprehensive metrics and audit trails
  • Scalable Infrastructure: Cloud-based execution with auto-scaling

Swarm Management

Initialize Swarm

Create a new swarm with specified topology and configuration:

mcp__flow-nexus__swarm_init({
  topology: "hierarchical", // Options: mesh, ring, star, hierarchical
  maxAgents: 8,
  strategy: "balanced" // Options: balanced, specialized, adaptive
})

Topology Guide:

  • Hierarchical: Tree structure with coordinator nodes (best for complex projects)
  • Mesh: Peer-to-peer collaboration (best for research and analysis)
  • Ring: Circular coordination (best for sequential workflows)
  • Star: Centralized hub (best for simple delegation)

Strategy Guide:

  • Balanced: Equal distribution of workload across agents
  • Specialized: Agents focus on specific expertise areas
  • Adaptive: Dynamic adjustment based on task complexity

Spawn Agents

Add specialized agents to the swarm:

mcp__flow-nexus__agent_spawn({
  type: "researcher", // Options: researcher, coder, analyst, optimizer, coordinator
  name: "Lead Researcher",
  capabilities: ["web_search", "analysis", "summarization"]
})

Agent Types:

  • Researcher: Information gathering, web search, analysis
  • Coder: Code generation, refactoring, implementation
  • Analyst: Data analysis, pattern recognition, insights
  • Optimizer: Performance tuning, resource optimization
  • Coordinator: Task delegation, progress tracking, integration

Orchestrate Tasks

Distribute tasks across the swarm:

mcp__flow-nexus__task_orchestrate({
  task: "Build a REST API with authentication and database integration",
  strategy: "parallel", // Options: parallel, sequential, adaptive
  maxAgents: 5,
  priority: "high" // Options: low, medium, high, critical
})

Execution Strategies:

  • Parallel: Maximum concurrency for independent subtasks
  • Sequential: Step-by-step execution with dependencies
  • Adaptive: AI-powered strategy selection based on task analysis

Monitor & Scale Swarms

// Get detailed swarm status
mcp__flow-nexus__swarm_status({
  swarm_id: "optional-id" // Uses active swarm if not provided
})

// List all active swarms
mcp__flow-nexus__swarm_list({
  status: "active" // Options: active, destroyed, all
})

// Scale swarm up or down
mcp__flow-nexus__swarm_scale({
  target_agents: 10,
  swarm_id: "optional-id"
})

// Gracefully destroy swarm
mcp__flow-nexus__swarm_destroy({
  swarm_id: "optional-id"
})

Workflow Automation

Create Workflow

Define event-driven workflows with message queue processing:

mcp__flow-nexus__workflow_create({
  name: "CI/CD Pipeline",
  description: "Automated testing, building, and deployment",
  steps: [
    {
      id: "test",
      action: "run_tests",
      agent: "tester",
      parallel: true
    },
    {
      id: "build",
      action: "build_app",
      agent: "builder",
      depends_on: ["test"]
    },
    {
      id: "deploy",
      action: "deploy_prod",
      agent: "deployer",
      depends_on: ["build"]
    }
  ],
  triggers: ["push_to_main", "manual_trigger"],
  metadata: {
    priority: 10,
    retry_policy: "exponential_backoff"
  }
})

Workflow Features:

  • Dependency Management: Define step dependencies with depends_on
  • Parallel Execution: Set parallel: true for concurrent steps
  • Event Triggers: GitHub events, schedules, manual triggers
  • Retry Policies: Automatic retry on transient failures
  • Priority Queuing: High-priority workflows execute first

Execute Workflow

Run workflows synchronously or asynchronously:

mcp__flow-nexus__workflow_execute({
  workflow_id: "workflow_id",
  input_data: {
    branch: "main",
    commit: "abc123",
    environment: "production"
  },
  async: true // Queue-based execution for long-running workflows
})

Execution Modes:

  • Sync (async: false): Immediate execution, wait for completion
  • Async (async: true): Message queue processing, non-blocking

Monitor Workflows

// Get workflow status and metrics
mcp__flow-nexus__workflow_status({
  workflow_id: "id",
  execution_id: "specific-run-id", // Optional
  include_metrics: true
})

// List workflows with filters
mcp__flow-nexus__workflow_list({
  status: "running", // Options: running, completed, failed, pending
  limit: 10,
  offset: 0
})

// Get complete audit trail
mcp__flow-nexus__workflow_audit_trail({
  workflow_id: "id",
  limit: 50,
  start_time: "2025-01-01T00:00:00Z"
})

Agent Assignment

Intelligently assign agents to workflow tasks:

mcp__flow-nexus__workflow_agent_assign({
  task_id: "task_id",
  agent_type: "coder", // Preferred agent type
  use_vector_similarity: true // AI-powered capability matching
})

Vector Similarity Matching:

  • Analyzes task requirements and agent capabilities
  • Finds optimal agent based on past performance
  • Considers workload and availability

Queue Management

Monitor and manage message queues:

mcp__flow-nexus__workflow_queue_status({
  queue_name: "optional-specific-queue",
  include_messages: true // Show pending messages
})

Agent Orchestration

Full-Stack Development Pattern

// 1. Initialize swarm with hierarchical topology
mcp__flow-nexus__swarm_init({
  topology: "hierarchical",
  maxAgents: 8,
  strategy: "specialized"
})

// 2. Spawn specialized agents
mcp__flow-nexus__agent_spawn({ type: "coordinator", name: "Project Manager" })
mcp__flow-nexus__agent_spawn({ type: "coder", name: "Backend Developer" })
mcp__flow-nexus__agent_spawn({ type: "coder", name: "Frontend Developer" })
mcp__flow-nexus__agent_spawn({ type: "coder", name: "Database Architect" })
mcp__flow-nexus__agent_spawn({ type: "analyst", name: "QA Engineer" })

// 3. Create development workflow
mcp__flow-nexus__workflow_create({
  name: "Full-Stack Development",
  steps: [
    { id: "requirements", action: "analyze_requirements", agent: "coordinator" },
    { id: "db_design", action: "design_schema", agent: "Database Architect" },
    { id: "backend", action: "build_api", agent: "Backend Developer", depends_on: ["db_design"] },
    { id: "frontend", action: "build_ui", agent: "Frontend Developer", depends_on: ["requirements"] },
    { id: "integration", action: "integrate", agent: "Backend Developer", depends_on: ["backend", "frontend"] },
    { id: "testing", action: "qa_testing", agent: "QA Engineer", depends_on: ["integration"] }
  ]
})

// 4. Execute workflow
mcp__flow-nexus__workflow_execute({
  workflow_id: "workflow_id",
  input_data: {
    project: "E-commerce Platform",
    tech_stack: ["Node.js", "React", "PostgreSQL"]
  }
})

Research & Analysis Pattern

// 1. Initialize mesh topology for collaborative research
mcp__flow-nexus__swarm_init({
  topology: "mesh",
  maxAgents: 5,
  strategy: "balanced"
})

// 2. Spawn research agents
mcp__flow-nexus__agent_spawn({ type: "researcher", name: "Primary Researcher" })
mcp__flow-nexus__agent_spawn({ type: "researcher", name: "Secondary Researcher" })
mcp__flow-nexus__agent_spawn({ type: "analyst", name: "Data Analyst" })
mcp__flow-nexus__agent_spawn({ type: "analyst", name: "Insights Analyst" })

// 3. Orchestrate research task
mcp__flow-nexus__task_orchestrate({
  task: "Research machine learning trends for 2025 and analyze market opportunities",
  strategy: "parallel",
  maxAgents: 4,
  priority: "high"
})

CI/CD Pipeline Pattern

mcp__flow-nexus__workflow_create({
  name: "Deployment Pipeline",
  description: "Automated testing, building, and multi-environment deployment",
  steps: [
    { id: "lint", action: "lint_code", agent: "code_quality", parallel: true },
    { id: "unit_test", action: "unit_tests", agent: "test_runner", parallel: true },
    { id: "integration_test", action: "integration_tests", agent: "test_runner", parallel: true },
    { id: "build", action: "build_artifacts", agent: "builder", depends_on: ["lint", "unit_test", "integration_test"] },
    { id: "security_scan", action: "security_scan", agent: "security", depends_on: ["build"] },
    { id: "deploy_staging", action: "deploy", agent: "deployer", depends_on: ["security_scan"] },
    { id: "smoke_test", action: "smoke_tests", agent: "test_runner", depends_on: ["deploy_staging"] },
    { id: "deploy_prod", action: "deploy", agent: "deployer", depends_on: ["smoke_test"] }
  ],
  triggers: ["github_push", "github_pr_merged"],
  metadata: {
    priority: 10,
    auto_rollback: true
  }
})

Data Processing Pipeline Pattern

mcp__flow-nexus__workflow_create({
  name: "ETL Pipeline",
  description: "Extract, Transform, Load data processing",
  steps: [
    { id: "extract", action: "extract_data", agent: "data_extractor" },
    { id: "validate_raw", action: "validate_data", agent: "validator", depends_on: ["extract"] },
    { id: "transform", action: "transform_data", agent: "transformer", depends_on: ["validate_raw"] },
    { id: "enrich", action: "enrich_data", agent: "enricher", depends_on: ["transform"] },
    { id: "load", action: "load_data", agent: "loader", depends_on: ["enrich"] },
    { id: "validate_final", action: "validate_data", agent: "validator", depends_on: ["load"] }
  ],
  triggers: ["schedule:0 2 * * *"], // Daily at 2 AM
  metadata: {
    retry_policy: "exponential_backoff",
    max_retries: 3
  }
})

Templates & Patterns

Use Pre-built Templates

// Create swarm from template
mcp__flow-nexus__swarm_create_from_template({
  template_name: "full-stack-dev",
  overrides: {
    maxAgents: 6,
    strategy: "specialized"
  }
})

// List available templates
mcp__flow-nexus__swarm_templates_list({
  category: "quickstart", // Options: quickstart, specialized, enterprise, custom, all
  includeStore: true
})

Available Template Categories:

Quickstart Templates:

  • full-stack-dev: Complete web development swarm
  • research-team: Research and analysis swarm
  • code-review: Automated code review swarm
  • data-pipeline: ETL and data processing

Specialized Templates:

  • ml-development: Machine learning project swarm
  • mobile-dev: Mobile app development
  • devops-automation: Infrastructure and deployment
  • security-audit: Security analysis and testing

Enterprise Templates:

  • enterprise-migration: Large-scale system migration
  • multi-repo-sync: Multi-repository coordination
  • compliance-review: Regulatory compliance workflows
  • incident-response: Automated incident management

Custom Template Creation

Save successful swarm configurations as reusable templates for future projects.

Advanced Features

Real-time Monitoring

// Subscribe to execution streams
mcp__flow-nexus__execution_stream_subscribe({
  stream_type: "claude-flow-swarm",
  deployment_id: "deployment_id"
})

// Get execution status
mcp__flow-nexus__execution_stream_status({
  stream_id: "stream_id"
})

// List files created during execution
mcp__flow-nexus__execution_files_list({
  stream_id: "stream_id",
  created_by: "claude-flow"
})

Swarm Metrics & Analytics

// Get swarm performance metrics
mcp__flow-nexus__swarm_status({
  swarm_id: "id"
})

// Analyze workflow efficiency
mcp__flow-nexus__workflow_status({
  workflow_id: "id",
  include_metrics: true
})

Multi-Swarm Coordination

Coordinate multiple swarms for complex, multi-phase projects:

// Phase 1: Research swarm
const researchSwarm = await mcp__flow-nexus__swarm_init({
  topology: "mesh",
  maxAgents: 4
})

// Phase 2: Development swarm
const devSwarm = await mcp__flow-nexus__swarm_init({
  topology: "hierarchical",
  maxAgents: 8
})

// Phase 3: Testing swarm
const testSwarm = await mcp__flow-nexus__swarm_init({
  topology: "star",
  maxAgents: 5
})

Best Practices

1. Choose the Right Topology

// Simple projects: Star
mcp__flow-nexus__swarm_init({ topology: "star", maxAgents: 3 })

// Collaborative work: Mesh
mcp__flow-nexus__swarm_init({ topology: "mesh", maxAgents: 5 })

// Complex projects: Hierarchical
mcp__flow-nexus__swarm_init({ topology: "hierarchical", maxAgents: 10 })

// Sequential workflows: Ring
mcp__flow-nexus__swarm_init({ topology: "ring", maxAgents: 4 })

2. Optimize Agent Assignment

// Use vector similarity for optimal matching
mcp__flow-nexus__workflow_agent_assign({
  task_id: "complex-task",
  use_vector_similarity: true
})

3. Implement Proper Error Handling

mcp__flow-nexus__workflow_create({
  name: "Resilient Workflow",
  steps: [...],
  metadata: {
    retry_policy: "exponential_backoff",
    max_retries: 3,
    timeout: 300000, // 5 minutes
    on_failure: "notify_and_rollback"
  }
})

4. Monitor and Scale

// Regular monitoring
const status = await mcp__flow-nexus__swarm_status()

// Scale based on workload
if (status.workload > 0.8) {
  await mcp__flow-nexus__swarm_scale({ target_agents: status.agents + 2 })
}

5. Use Async Execution for Long-Running Workflows

// Long-running workflows should use message queues
mcp__flow-nexus__workflow_execute({
  workflow_id: "data-pipeline",
  async: true // Non-blocking execution
})

// Monitor progress
mcp__flow-nexus__workflow_queue_status({ include_messages: true })

6. Clean Up Resources

// Destroy swarm when complete
mcp__flow-nexus__swarm_destroy({ swarm_id: "id" })

7. Leverage Templates

// Use proven templates instead of building from scratch
mcp__flow-nexus__swarm_create_from_template({
  template_name: "code-review",
  overrides: { maxAgents: 4 }
})

Integration with Claude Flow

Flow Nexus swarms integrate seamlessly with Claude Flow hooks:

# Pre-task coordination setup
npx claude-flow@alpha hooks pre-task --description "Initialize swarm"

# Post-task metrics export
npx claude-flow@alpha hooks post-task --task-id "swarm-execution"

Common Use Cases

1. Multi-Repo Development

  • Coordinate development across multiple repositories
  • Synchronized testing and deployment
  • Cross-repo dependency management

2. Research Projects

  • Distributed information gathering
  • Parallel analysis of different data sources
  • Collaborative synthesis and reporting

3. DevOps Automation

  • Infrastructure as Code deployment
  • Multi-environment testing
  • Automated rollback and recovery

4. Code Quality Workflows

  • Automated code review
  • Security scanning
  • Performance benchmarking

5. Data Processing

  • Large-scale ETL pipelines
  • Real-time data transformation
  • Data validation and quality checks

Authentication & Setup

# Install Flow Nexus
npm install -g flow-nexus@latest

# Register account
npx flow-nexus@latest register

# Login
npx flow-nexus@latest login

# Add MCP server to Claude Code
claude mcp add flow-nexus npx flow-nexus@latest mcp start

Support & Resources


Remember: Flow Nexus provides cloud-based orchestration infrastructure. For local execution and coordination, use the core claude-flow MCP server alongside Flow Nexus for maximum flexibility.

Quick Install

/plugin add https://github.com/natea/fitfinder/tree/main/flow-nexus-swarm

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

natea/fitfinder
Path: .claude/skills/flow-nexus-swarm

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

business-rule-documentation

Meta

This skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.

View skill

generating-unit-tests

Meta

This skill automatically generates comprehensive unit tests from source code when developers request test creation. It supports multiple testing frameworks like Jest, pytest, and JUnit, intelligently detecting the appropriate one or using a specified framework. Use it when asking to "generate tests," "create unit tests," or using the "gut" shortcut with file paths.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill