Back to Skills

control-tower-design

majiayu000
Updated Yesterday
58
9
58
View on GitHub
Designaidesign

About

This skill activates when developers need to design or implement centralized supply chain visibility and monitoring platforms (control towers). It provides expertise on establishing real-time monitoring, exception management, and proactive coordination capabilities. Use it for requirements related to centralized control, visibility platforms, or operational command centers, but refer to other skills for specific track-and-trace or collaboration features.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/control-tower-design

Copy and paste this command in Claude Code to install this skill

Documentation

Control Tower Design

You are an expert in supply chain control tower design and implementation. Your goal is to help organizations establish centralized visibility, monitoring, and coordination capabilities to proactively manage supply chain operations and respond rapidly to disruptions.

Initial Assessment

Before designing a control tower, understand:

  1. Business Drivers

    • What problems is the control tower solving? (visibility gaps, slow response, inefficiencies)
    • Target benefits? (cost reduction, service improvement, risk mitigation)
    • Triggering events? (disruptions, growth, complexity)
    • Executive sponsorship and budget?
  2. Scope & Coverage

    • What processes to cover? (planning, execution, logistics, procurement)
    • Geographic coverage? (regional, global)
    • Internal vs. extended (suppliers, partners, customers)?
    • End-to-end or domain-specific?
  3. Current State

    • Existing visibility capabilities?
    • Data sources and systems? (ERP, TMS, WMS, etc.)
    • Team structure and skills?
    • Performance monitoring processes?
  4. Organizational Readiness

    • Cross-functional collaboration maturity?
    • Data quality and integration capability?
    • Change management resources?
    • Technology infrastructure?

Control Tower Framework

Control Tower Types

1. Planning Control Tower

  • Demand-supply matching
  • Production planning coordination
  • S&OP process management
  • Scenario planning and what-if analysis
  • Forecast collaboration

2. Logistics Control Tower

  • Transportation visibility
  • Shipment tracking and monitoring
  • Carrier performance management
  • Freight spend optimization
  • Last-mile delivery coordination

3. Procurement Control Tower

  • Supplier performance monitoring
  • Order tracking (PO to delivery)
  • Supplier risk monitoring
  • Contract compliance
  • Spend analytics

4. Manufacturing Control Tower

  • Production schedule monitoring
  • Material availability tracking
  • Quality monitoring
  • Equipment performance
  • Yield optimization

5. End-to-End Control Tower

  • Comprehensive supply chain visibility
  • Cross-functional coordination
  • Integrated exception management
  • Multi-tier visibility
  • Strategic and operational integration

Control Tower Maturity Model

Level 1: Basic Visibility

  • Reactive monitoring
  • Manual data collection
  • Siloed dashboards
  • Limited integration
  • Email-based communication

Level 2: Integrated Monitoring

  • Automated data feeds
  • Consolidated dashboards
  • Exception alerts
  • Basic analytics
  • Standard KPIs

Level 3: Proactive Management

  • Predictive analytics
  • Automated workflows
  • Root cause analysis
  • Performance optimization
  • Collaboration tools

Level 4: Cognitive Operations

  • AI/ML-driven insights
  • Prescriptive recommendations
  • Automated decision-making
  • Self-healing processes
  • Continuous optimization

Level 5: Autonomous Supply Chain

  • Fully automated operations
  • Real-time optimization
  • Minimal human intervention
  • Ecosystem orchestration
  • Digital twin integration

Control Tower Design Architecture

Data Architecture

import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import json

class ControlTowerPlatform:
    """Supply Chain Control Tower platform for visibility and monitoring"""

    def __init__(self):
        self.data_sources = {}
        self.orders = []
        self.shipments = []
        self.exceptions = []
        self.kpis = {}
        self.alerts = []

    def register_data_source(self, source_name, source_type, update_frequency,
                           connection_params):
        """
        Register data source for control tower

        source_type: 'ERP', 'TMS', 'WMS', 'MES', 'API', 'EDI', etc.
        update_frequency: minutes between updates
        """

        self.data_sources[source_name] = {
            'type': source_type,
            'update_frequency_min': update_frequency,
            'last_update': None,
            'status': 'Connected',
            'connection_params': connection_params,
            'record_count': 0
        }

    def ingest_orders(self, orders_data):
        """
        Ingest order data from various sources

        orders_data: list of order dicts
        """

        for order in orders_data:
            order_enriched = {
                'order_id': order['order_id'],
                'customer_id': order.get('customer_id'),
                'order_date': order['order_date'],
                'requested_date': order['requested_date'],
                'promised_date': order.get('promised_date', order['requested_date']),
                'status': order.get('status', 'Open'),
                'value': order.get('value', 0),
                'priority': order.get('priority', 'Normal'),
                'items': order.get('items', []),
                'fulfillment_location': order.get('fulfillment_location'),
                'shipment_id': order.get('shipment_id'),
                'ingestion_timestamp': datetime.now()
            }

            # Calculate metrics
            order_enriched['days_to_requested'] = self._calculate_days_between(
                datetime.now(), order['requested_date']
            )

            # Flag exceptions
            if order_enriched['days_to_requested'] < 0:
                self._create_exception(
                    'ORDER_LATE',
                    f"Order {order['order_id']} is past requested date",
                    'High',
                    order_id=order['order_id']
                )

            self.orders.append(order_enriched)

    def ingest_shipments(self, shipments_data):
        """
        Ingest shipment tracking data

        shipments_data: list of shipment dicts with tracking info
        """

        for shipment in shipments_data:
            shipment_enriched = {
                'shipment_id': shipment['shipment_id'],
                'order_ids': shipment.get('order_ids', []),
                'carrier': shipment.get('carrier'),
                'tracking_number': shipment.get('tracking_number'),
                'origin': shipment.get('origin'),
                'destination': shipment.get('destination'),
                'ship_date': shipment.get('ship_date'),
                'planned_delivery_date': shipment.get('planned_delivery_date'),
                'actual_delivery_date': shipment.get('actual_delivery_date'),
                'current_location': shipment.get('current_location'),
                'status': shipment.get('status', 'In Transit'),
                'milestones': shipment.get('milestones', []),
                'ingestion_timestamp': datetime.now()
            }

            # Calculate delivery performance
            if shipment_enriched['actual_delivery_date']:
                shipment_enriched['delivery_performance_days'] = self._calculate_days_between(
                    shipment_enriched['planned_delivery_date'],
                    shipment_enriched['actual_delivery_date']
                )

                if shipment_enriched['delivery_performance_days'] < 0:
                    self._create_exception(
                        'SHIPMENT_DELAYED',
                        f"Shipment {shipment['shipment_id']} delivered late",
                        'Medium',
                        shipment_id=shipment['shipment_id']
                    )

            # Check for in-transit issues
            if shipment_enriched['status'] == 'Delayed':
                self._create_exception(
                    'SHIPMENT_DELAYED',
                    f"Shipment {shipment['shipment_id']} is experiencing delays",
                    'High',
                    shipment_id=shipment['shipment_id']
                )

            self.shipments.append(shipment_enriched)

    def _calculate_days_between(self, date1, date2):
        """Calculate days between two dates (date2 - date1)"""

        if isinstance(date1, str):
            date1 = datetime.strptime(date1, '%Y-%m-%d')
        if isinstance(date2, str):
            date2 = datetime.strptime(date2, '%Y-%m-%d')

        return (date2 - date1).days

    def _create_exception(self, exception_type, description, severity,
                         order_id=None, shipment_id=None, supplier_id=None):
        """Create exception for exception management"""

        exception = {
            'exception_id': f"EXC_{len(self.exceptions) + 1:06d}",
            'timestamp': datetime.now(),
            'type': exception_type,
            'description': description,
            'severity': severity,
            'status': 'Open',
            'order_id': order_id,
            'shipment_id': shipment_id,
            'supplier_id': supplier_id,
            'assigned_to': None,
            'resolution': None,
            'resolution_time': None
        }

        self.exceptions.append(exception)

        # Create alert if high severity
        if severity in ['High', 'Critical']:
            self._create_alert(exception)

    def _create_alert(self, exception):
        """Create alert for critical exceptions"""

        alert = {
            'alert_id': f"ALT_{len(self.alerts) + 1:06d}",
            'timestamp': datetime.now(),
            'exception_id': exception['exception_id'],
            'type': exception['type'],
            'severity': exception['severity'],
            'message': exception['description'],
            'status': 'New',
            'acknowledged_by': None,
            'acknowledgment_time': None
        }

        self.alerts.append(alert)

    def calculate_kpis(self):
        """Calculate key performance indicators"""

        # Order KPIs
        total_orders = len(self.orders)
        late_orders = len([o for o in self.orders if o['days_to_requested'] < 0])
        on_time_pct = ((total_orders - late_orders) / total_orders * 100) if total_orders > 0 else 100

        # Shipment KPIs
        total_shipments = len(self.shipments)
        delivered_shipments = [s for s in self.shipments if s.get('actual_delivery_date')]
        late_deliveries = len([s for s in delivered_shipments if s.get('delivery_performance_days', 0) < 0])
        otd_pct = ((len(delivered_shipments) - late_deliveries) / len(delivered_shipments) * 100) if delivered_shipments else 100

        # Exception KPIs
        open_exceptions = len([e for e in self.exceptions if e['status'] == 'Open'])
        high_severity_exceptions = len([e for e in self.exceptions if e['severity'] in ['High', 'Critical']])

        self.kpis = {
            'orders': {
                'total': total_orders,
                'late': late_orders,
                'on_time_percentage': round(on_time_pct, 1)
            },
            'shipments': {
                'total': total_shipments,
                'delivered': len(delivered_shipments),
                'late_deliveries': late_deliveries,
                'on_time_delivery_percentage': round(otd_pct, 1)
            },
            'exceptions': {
                'total': len(self.exceptions),
                'open': open_exceptions,
                'high_severity': high_severity_exceptions
            },
            'alerts': {
                'total': len(self.alerts),
                'new': len([a for a in self.alerts if a['status'] == 'New'])
            }
        }

        return self.kpis

    def get_exceptions_dashboard(self):
        """Generate exceptions dashboard"""

        if not self.exceptions:
            return pd.DataFrame()

        df = pd.DataFrame(self.exceptions)

        # Summary by type
        by_type = df.groupby(['type', 'severity']).size().reset_index(name='count')

        # Summary by status
        by_status = df.groupby('status').size().reset_index(name='count')

        return {
            'all_exceptions': df,
            'by_type': by_type,
            'by_status': by_status,
            'open_high_priority': df[(df['status'] == 'Open') & (df['severity'].isin(['High', 'Critical']))]
        }

    def get_alerts_requiring_action(self):
        """Get alerts that need immediate attention"""

        new_alerts = [a for a in self.alerts if a['status'] == 'New']

        return pd.DataFrame(new_alerts) if new_alerts else pd.DataFrame()

    def generate_control_tower_dashboard(self):
        """Generate comprehensive control tower dashboard"""

        kpis = self.calculate_kpis()

        dashboard = {
            'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
            'kpis': kpis,
            'data_sources': {
                'connected': len([s for s in self.data_sources.values() if s['status'] == 'Connected']),
                'total': len(self.data_sources)
            },
            'alerts': {
                'new_alerts': kpis['alerts']['new'],
                'requires_action': len([a for a in self.alerts if a['status'] == 'New'])
            },
            'exceptions': {
                'open_exceptions': kpis['exceptions']['open'],
                'high_severity': kpis['exceptions']['high_severity']
            },
            'performance_summary': {
                'order_on_time': f"{kpis['orders']['on_time_percentage']}%",
                'delivery_on_time': f"{kpis['shipments']['on_time_delivery_percentage']}%"
            }
        }

        return dashboard


# Example usage
control_tower = ControlTowerPlatform()

# Register data sources
control_tower.register_data_source(
    'ERP_System',
    'ERP',
    update_frequency=15,
    connection_params={'host': 'erp.company.com', 'api_key': 'xxx'}
)

control_tower.register_data_source(
    'TMS_System',
    'TMS',
    update_frequency=5,
    connection_params={'host': 'tms.company.com', 'api_key': 'yyy'}
)

# Ingest orders
orders = [
    {
        'order_id': 'ORD001',
        'customer_id': 'CUST001',
        'order_date': '2025-12-01',
        'requested_date': '2025-12-15',
        'promised_date': '2025-12-15',
        'status': 'Processing',
        'value': 50000,
        'priority': 'High'
    },
    {
        'order_id': 'ORD002',
        'customer_id': 'CUST002',
        'order_date': '2025-11-20',
        'requested_date': '2025-12-05',  # Past date - will trigger exception
        'promised_date': '2025-12-10',
        'status': 'Delayed',
        'value': 30000,
        'priority': 'Normal'
    }
]

control_tower.ingest_orders(orders)

# Ingest shipments
shipments = [
    {
        'shipment_id': 'SHP001',
        'order_ids': ['ORD001'],
        'carrier': 'FedEx',
        'tracking_number': 'TRK123456',
        'origin': 'Chicago, IL',
        'destination': 'New York, NY',
        'ship_date': '2025-12-10',
        'planned_delivery_date': '2025-12-12',
        'actual_delivery_date': '2025-12-14',  # Late
        'status': 'Delivered'
    },
    {
        'shipment_id': 'SHP002',
        'order_ids': ['ORD002'],
        'carrier': 'UPS',
        'tracking_number': 'TRK789012',
        'origin': 'Los Angeles, CA',
        'destination': 'Seattle, WA',
        'ship_date': '2025-12-08',
        'planned_delivery_date': '2025-12-10',
        'status': 'Delayed',  # Currently delayed
        'current_location': 'Portland, OR'
    }
]

control_tower.ingest_shipments(shipments)

# Generate dashboard
dashboard = control_tower.generate_control_tower_dashboard()

print("=== CONTROL TOWER DASHBOARD ===")
print(f"Timestamp: {dashboard['timestamp']}")
print(f"\nKPIs:")
print(f"  Orders: {dashboard['kpis']['orders']['total']} total, {dashboard['kpis']['orders']['late']} late ({dashboard['performance_summary']['order_on_time']} on-time)")
print(f"  Shipments: {dashboard['kpis']['shipments']['delivered']} delivered, {dashboard['kpis']['shipments']['late_deliveries']} late ({dashboard['performance_summary']['delivery_on_time']} on-time)")
print(f"  Exceptions: {dashboard['kpis']['exceptions']['open']} open ({dashboard['kpis']['exceptions']['high_severity']} high severity)")
print(f"  Alerts: {dashboard['alerts']['new_alerts']} new alerts requiring action")

# Get exceptions
exceptions_dashboard = control_tower.get_exceptions_dashboard()
print(f"\n\nOpen High-Priority Exceptions:")
if not exceptions_dashboard['open_high_priority'].empty:
    print(exceptions_dashboard['open_high_priority'][['exception_id', 'type', 'description', 'severity']])

# Get alerts
alerts = control_tower.get_alerts_requiring_action()
print(f"\n\nAlerts Requiring Action:")
if not alerts.empty:
    print(alerts[['alert_id', 'type', 'severity', 'message']])

Tools & Libraries

Python Libraries

Data Processing:

  • pandas: Data manipulation
  • numpy: Numerical computations
  • sqlalchemy: Database connections

Real-Time Processing:

  • kafka-python: Apache Kafka integration
  • paho-mqtt: MQTT messaging
  • redis: Real-time data store

Visualization:

  • dash: Interactive dashboards
  • plotly: Interactive charts
  • streamlit: Dashboard apps
  • bokeh: Real-time visualizations

APIs & Integration:

  • requests: HTTP requests
  • fastapi: API development
  • flask: Web framework

Commercial Software

Control Tower Platforms:

  • Blue Yonder (JDA): Luminate Control Tower
  • Kinaxis: RapidResponse
  • o9 Solutions: Digital brain platform
  • E2open: Control tower platform
  • SAP: Integrated Business Planning with Control Tower
  • Oracle: Supply Chain Management Cloud

Visibility Platforms:

  • FourKites: Real-time visibility
  • project44: Transportation visibility
  • Shippeo: Supply chain visibility
  • ClearMetal: Predictive logistics
  • Descartes MacroPoint: Load tracking

Integration & IoT:

  • MuleSoft: API integration
  • Boomi: Integration platform
  • PTC ThingWorx: IoT platform
  • AWS IoT: IoT services

Common Challenges & Solutions

Challenge: Data Integration Complexity

Problem:

  • Multiple disparate systems
  • Different data formats and standards
  • Real-time vs. batch data
  • Data quality issues

Solutions:

  • Phased integration approach (start with critical systems)
  • Master data management (MDM)
  • API-first architecture
  • Data quality rules and validation
  • Middleware/integration platform
  • Standardized data models

Challenge: Organization Silos

Problem:

  • Resistance to centralized control
  • Competing priorities
  • Lack of collaboration culture
  • Unclear ownership

Solutions:

  • Executive sponsorship and governance
  • Cross-functional team structure
  • Clear roles and responsibilities (RACI)
  • Shared KPIs and incentives
  • Change management program
  • Quick wins to demonstrate value

Challenge: Alert Fatigue

Problem:

  • Too many alerts
  • False positives
  • Important signals missed
  • Reduced responsiveness

Solutions:

  • Intelligent alert thresholds
  • Machine learning for anomaly detection
  • Alert prioritization and routing
  • Escalation rules
  • Alert aggregation and suppression
  • Continuous tuning

Challenge: ROI Justification

Problem:

  • High implementation costs
  • Intangible benefits
  • Long payback period
  • Competing investments

Solutions:

  • Start with pilot (limited scope)
  • Quantify benefits (cost savings, revenue protection)
  • Benchmark against manual processes
  • Value case studies and references
  • Phased investment approach
  • Track and communicate wins

Challenge: User Adoption

Problem:

  • Resistance to new tools
  • Workflow disruption
  • Training requirements
  • Habit change needed

Solutions:

  • User-centric design
  • Training and enablement
  • Change champions
  • Gradual rollout
  • Continuous improvement based on feedback
  • Gamification and incentives

Challenge: Scalability

Problem:

  • Growing data volumes
  • More users and use cases
  • Performance degradation
  • Infrastructure costs

Solutions:

  • Cloud-based architecture
  • Microservices design
  • Data archiving and retention policies
  • Performance optimization
  • Horizontal scaling
  • Cost monitoring and optimization

Output Format

Control Tower Dashboard

Executive Summary:

  • Overall supply chain health score
  • Critical alerts requiring action
  • Key performance trends
  • Major disruptions or risks

KPI Scoreboard:

KPICurrentTargetTrendStatus
Order Fill Rate94.2%96.0%↘ -1.2%⚠ Below
On-Time Delivery89.5%92.0%↗ +0.8%⚠ Below
Perfect Order %85.3%90.0%→ 0.0%⚠ Below
Order Cycle Time4.2 days4.0 days↗ +0.1⚠ Above
Supply Chain Cost as % Revenue8.2%8.0%↘ -0.2%✓ On Track

Exception Summary:

CategoryOpenCriticalHighMediumAging (>48h)
Orders2338125
Shipments1826103
Inventory121472
Suppliers80351
Total616213411

Critical Alerts:

Alert IDTimeTypeDescriptionAssigned ToStatus
ALT-004208:15Shipment DelayedContainer stuck at port - 50 orders affectedJohn D.In Progress
ALT-004107:30Supplier IssueSupplier XYZ production halt - capacity shortfallMary S.New
ALT-0038YesterdayInventory StockoutSKU-12345 out of stock at DC3Tom R.Resolving

Shipment Tracking:

Shipment IDOriginDestinationStatusETADelayRisk
SHP-10234ShanghaiLA PortIn TransitJan 28On Time✓ Low
SHP-10235MumbaiNY PortDelayedJan 30+3 days⚠ High
SHP-10236HamburgChicagoCustoms HoldTBD+5 days⚠⚠ Critical

Supplier Performance:

SupplierOn-Time DeliveryQualityLead TimeRisk ScoreTrending
Supplier A96.2%99.8%12 daysLow✓ Improving
Supplier B88.5%97.2%18 daysMedium⚠ Declining
Supplier C92.1%95.5%15 daysHigh→ Stable

Questions to Ask

If you need more context:

  1. What business problem is the control tower solving?
  2. What scope of operations to cover? (planning, execution, logistics, etc.)
  3. What data sources need integration? (ERP, TMS, WMS, suppliers, etc.)
  4. What are the critical KPIs to monitor?
  5. Who are the users and stakeholders?
  6. What's the current visibility and monitoring maturity?
  7. What technology infrastructure exists?
  8. What's the budget and timeline?
  9. Is this internal or extended (suppliers, customers)?
  10. What are the success criteria?

Related Skills

  • track-and-trace: For product and shipment tracking
  • supplier-collaboration: For supplier integration and communication
  • demand-supply-matching: For demand-supply balancing
  • risk-mitigation: For disruption monitoring and response
  • network-design: For optimizing control tower scope
  • inventory-optimization: For inventory visibility and management
  • route-optimization: For transportation monitoring
  • demand-forecasting: For demand visibility integration

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/control-tower-design

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill