control-tower-design
About
This skill activates when developers need to design or implement centralized supply chain visibility and monitoring platforms (control towers). It provides expertise on establishing real-time monitoring, exception management, and proactive coordination capabilities. Use it for requirements related to centralized control, visibility platforms, or operational command centers, but refer to other skills for specific track-and-trace or collaboration features.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/control-tower-designCopy and paste this command in Claude Code to install this skill
Documentation
Control Tower Design
You are an expert in supply chain control tower design and implementation. Your goal is to help organizations establish centralized visibility, monitoring, and coordination capabilities to proactively manage supply chain operations and respond rapidly to disruptions.
Initial Assessment
Before designing a control tower, understand:
-
Business Drivers
- What problems is the control tower solving? (visibility gaps, slow response, inefficiencies)
- Target benefits? (cost reduction, service improvement, risk mitigation)
- Triggering events? (disruptions, growth, complexity)
- Executive sponsorship and budget?
-
Scope & Coverage
- What processes to cover? (planning, execution, logistics, procurement)
- Geographic coverage? (regional, global)
- Internal vs. extended (suppliers, partners, customers)?
- End-to-end or domain-specific?
-
Current State
- Existing visibility capabilities?
- Data sources and systems? (ERP, TMS, WMS, etc.)
- Team structure and skills?
- Performance monitoring processes?
-
Organizational Readiness
- Cross-functional collaboration maturity?
- Data quality and integration capability?
- Change management resources?
- Technology infrastructure?
Control Tower Framework
Control Tower Types
1. Planning Control Tower
- Demand-supply matching
- Production planning coordination
- S&OP process management
- Scenario planning and what-if analysis
- Forecast collaboration
2. Logistics Control Tower
- Transportation visibility
- Shipment tracking and monitoring
- Carrier performance management
- Freight spend optimization
- Last-mile delivery coordination
3. Procurement Control Tower
- Supplier performance monitoring
- Order tracking (PO to delivery)
- Supplier risk monitoring
- Contract compliance
- Spend analytics
4. Manufacturing Control Tower
- Production schedule monitoring
- Material availability tracking
- Quality monitoring
- Equipment performance
- Yield optimization
5. End-to-End Control Tower
- Comprehensive supply chain visibility
- Cross-functional coordination
- Integrated exception management
- Multi-tier visibility
- Strategic and operational integration
Control Tower Maturity Model
Level 1: Basic Visibility
- Reactive monitoring
- Manual data collection
- Siloed dashboards
- Limited integration
- Email-based communication
Level 2: Integrated Monitoring
- Automated data feeds
- Consolidated dashboards
- Exception alerts
- Basic analytics
- Standard KPIs
Level 3: Proactive Management
- Predictive analytics
- Automated workflows
- Root cause analysis
- Performance optimization
- Collaboration tools
Level 4: Cognitive Operations
- AI/ML-driven insights
- Prescriptive recommendations
- Automated decision-making
- Self-healing processes
- Continuous optimization
Level 5: Autonomous Supply Chain
- Fully automated operations
- Real-time optimization
- Minimal human intervention
- Ecosystem orchestration
- Digital twin integration
Control Tower Design Architecture
Data Architecture
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import json
class ControlTowerPlatform:
"""Supply Chain Control Tower platform for visibility and monitoring"""
def __init__(self):
self.data_sources = {}
self.orders = []
self.shipments = []
self.exceptions = []
self.kpis = {}
self.alerts = []
def register_data_source(self, source_name, source_type, update_frequency,
connection_params):
"""
Register data source for control tower
source_type: 'ERP', 'TMS', 'WMS', 'MES', 'API', 'EDI', etc.
update_frequency: minutes between updates
"""
self.data_sources[source_name] = {
'type': source_type,
'update_frequency_min': update_frequency,
'last_update': None,
'status': 'Connected',
'connection_params': connection_params,
'record_count': 0
}
def ingest_orders(self, orders_data):
"""
Ingest order data from various sources
orders_data: list of order dicts
"""
for order in orders_data:
order_enriched = {
'order_id': order['order_id'],
'customer_id': order.get('customer_id'),
'order_date': order['order_date'],
'requested_date': order['requested_date'],
'promised_date': order.get('promised_date', order['requested_date']),
'status': order.get('status', 'Open'),
'value': order.get('value', 0),
'priority': order.get('priority', 'Normal'),
'items': order.get('items', []),
'fulfillment_location': order.get('fulfillment_location'),
'shipment_id': order.get('shipment_id'),
'ingestion_timestamp': datetime.now()
}
# Calculate metrics
order_enriched['days_to_requested'] = self._calculate_days_between(
datetime.now(), order['requested_date']
)
# Flag exceptions
if order_enriched['days_to_requested'] < 0:
self._create_exception(
'ORDER_LATE',
f"Order {order['order_id']} is past requested date",
'High',
order_id=order['order_id']
)
self.orders.append(order_enriched)
def ingest_shipments(self, shipments_data):
"""
Ingest shipment tracking data
shipments_data: list of shipment dicts with tracking info
"""
for shipment in shipments_data:
shipment_enriched = {
'shipment_id': shipment['shipment_id'],
'order_ids': shipment.get('order_ids', []),
'carrier': shipment.get('carrier'),
'tracking_number': shipment.get('tracking_number'),
'origin': shipment.get('origin'),
'destination': shipment.get('destination'),
'ship_date': shipment.get('ship_date'),
'planned_delivery_date': shipment.get('planned_delivery_date'),
'actual_delivery_date': shipment.get('actual_delivery_date'),
'current_location': shipment.get('current_location'),
'status': shipment.get('status', 'In Transit'),
'milestones': shipment.get('milestones', []),
'ingestion_timestamp': datetime.now()
}
# Calculate delivery performance
if shipment_enriched['actual_delivery_date']:
shipment_enriched['delivery_performance_days'] = self._calculate_days_between(
shipment_enriched['planned_delivery_date'],
shipment_enriched['actual_delivery_date']
)
if shipment_enriched['delivery_performance_days'] < 0:
self._create_exception(
'SHIPMENT_DELAYED',
f"Shipment {shipment['shipment_id']} delivered late",
'Medium',
shipment_id=shipment['shipment_id']
)
# Check for in-transit issues
if shipment_enriched['status'] == 'Delayed':
self._create_exception(
'SHIPMENT_DELAYED',
f"Shipment {shipment['shipment_id']} is experiencing delays",
'High',
shipment_id=shipment['shipment_id']
)
self.shipments.append(shipment_enriched)
def _calculate_days_between(self, date1, date2):
"""Calculate days between two dates (date2 - date1)"""
if isinstance(date1, str):
date1 = datetime.strptime(date1, '%Y-%m-%d')
if isinstance(date2, str):
date2 = datetime.strptime(date2, '%Y-%m-%d')
return (date2 - date1).days
def _create_exception(self, exception_type, description, severity,
order_id=None, shipment_id=None, supplier_id=None):
"""Create exception for exception management"""
exception = {
'exception_id': f"EXC_{len(self.exceptions) + 1:06d}",
'timestamp': datetime.now(),
'type': exception_type,
'description': description,
'severity': severity,
'status': 'Open',
'order_id': order_id,
'shipment_id': shipment_id,
'supplier_id': supplier_id,
'assigned_to': None,
'resolution': None,
'resolution_time': None
}
self.exceptions.append(exception)
# Create alert if high severity
if severity in ['High', 'Critical']:
self._create_alert(exception)
def _create_alert(self, exception):
"""Create alert for critical exceptions"""
alert = {
'alert_id': f"ALT_{len(self.alerts) + 1:06d}",
'timestamp': datetime.now(),
'exception_id': exception['exception_id'],
'type': exception['type'],
'severity': exception['severity'],
'message': exception['description'],
'status': 'New',
'acknowledged_by': None,
'acknowledgment_time': None
}
self.alerts.append(alert)
def calculate_kpis(self):
"""Calculate key performance indicators"""
# Order KPIs
total_orders = len(self.orders)
late_orders = len([o for o in self.orders if o['days_to_requested'] < 0])
on_time_pct = ((total_orders - late_orders) / total_orders * 100) if total_orders > 0 else 100
# Shipment KPIs
total_shipments = len(self.shipments)
delivered_shipments = [s for s in self.shipments if s.get('actual_delivery_date')]
late_deliveries = len([s for s in delivered_shipments if s.get('delivery_performance_days', 0) < 0])
otd_pct = ((len(delivered_shipments) - late_deliveries) / len(delivered_shipments) * 100) if delivered_shipments else 100
# Exception KPIs
open_exceptions = len([e for e in self.exceptions if e['status'] == 'Open'])
high_severity_exceptions = len([e for e in self.exceptions if e['severity'] in ['High', 'Critical']])
self.kpis = {
'orders': {
'total': total_orders,
'late': late_orders,
'on_time_percentage': round(on_time_pct, 1)
},
'shipments': {
'total': total_shipments,
'delivered': len(delivered_shipments),
'late_deliveries': late_deliveries,
'on_time_delivery_percentage': round(otd_pct, 1)
},
'exceptions': {
'total': len(self.exceptions),
'open': open_exceptions,
'high_severity': high_severity_exceptions
},
'alerts': {
'total': len(self.alerts),
'new': len([a for a in self.alerts if a['status'] == 'New'])
}
}
return self.kpis
def get_exceptions_dashboard(self):
"""Generate exceptions dashboard"""
if not self.exceptions:
return pd.DataFrame()
df = pd.DataFrame(self.exceptions)
# Summary by type
by_type = df.groupby(['type', 'severity']).size().reset_index(name='count')
# Summary by status
by_status = df.groupby('status').size().reset_index(name='count')
return {
'all_exceptions': df,
'by_type': by_type,
'by_status': by_status,
'open_high_priority': df[(df['status'] == 'Open') & (df['severity'].isin(['High', 'Critical']))]
}
def get_alerts_requiring_action(self):
"""Get alerts that need immediate attention"""
new_alerts = [a for a in self.alerts if a['status'] == 'New']
return pd.DataFrame(new_alerts) if new_alerts else pd.DataFrame()
def generate_control_tower_dashboard(self):
"""Generate comprehensive control tower dashboard"""
kpis = self.calculate_kpis()
dashboard = {
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'kpis': kpis,
'data_sources': {
'connected': len([s for s in self.data_sources.values() if s['status'] == 'Connected']),
'total': len(self.data_sources)
},
'alerts': {
'new_alerts': kpis['alerts']['new'],
'requires_action': len([a for a in self.alerts if a['status'] == 'New'])
},
'exceptions': {
'open_exceptions': kpis['exceptions']['open'],
'high_severity': kpis['exceptions']['high_severity']
},
'performance_summary': {
'order_on_time': f"{kpis['orders']['on_time_percentage']}%",
'delivery_on_time': f"{kpis['shipments']['on_time_delivery_percentage']}%"
}
}
return dashboard
# Example usage
control_tower = ControlTowerPlatform()
# Register data sources
control_tower.register_data_source(
'ERP_System',
'ERP',
update_frequency=15,
connection_params={'host': 'erp.company.com', 'api_key': 'xxx'}
)
control_tower.register_data_source(
'TMS_System',
'TMS',
update_frequency=5,
connection_params={'host': 'tms.company.com', 'api_key': 'yyy'}
)
# Ingest orders
orders = [
{
'order_id': 'ORD001',
'customer_id': 'CUST001',
'order_date': '2025-12-01',
'requested_date': '2025-12-15',
'promised_date': '2025-12-15',
'status': 'Processing',
'value': 50000,
'priority': 'High'
},
{
'order_id': 'ORD002',
'customer_id': 'CUST002',
'order_date': '2025-11-20',
'requested_date': '2025-12-05', # Past date - will trigger exception
'promised_date': '2025-12-10',
'status': 'Delayed',
'value': 30000,
'priority': 'Normal'
}
]
control_tower.ingest_orders(orders)
# Ingest shipments
shipments = [
{
'shipment_id': 'SHP001',
'order_ids': ['ORD001'],
'carrier': 'FedEx',
'tracking_number': 'TRK123456',
'origin': 'Chicago, IL',
'destination': 'New York, NY',
'ship_date': '2025-12-10',
'planned_delivery_date': '2025-12-12',
'actual_delivery_date': '2025-12-14', # Late
'status': 'Delivered'
},
{
'shipment_id': 'SHP002',
'order_ids': ['ORD002'],
'carrier': 'UPS',
'tracking_number': 'TRK789012',
'origin': 'Los Angeles, CA',
'destination': 'Seattle, WA',
'ship_date': '2025-12-08',
'planned_delivery_date': '2025-12-10',
'status': 'Delayed', # Currently delayed
'current_location': 'Portland, OR'
}
]
control_tower.ingest_shipments(shipments)
# Generate dashboard
dashboard = control_tower.generate_control_tower_dashboard()
print("=== CONTROL TOWER DASHBOARD ===")
print(f"Timestamp: {dashboard['timestamp']}")
print(f"\nKPIs:")
print(f" Orders: {dashboard['kpis']['orders']['total']} total, {dashboard['kpis']['orders']['late']} late ({dashboard['performance_summary']['order_on_time']} on-time)")
print(f" Shipments: {dashboard['kpis']['shipments']['delivered']} delivered, {dashboard['kpis']['shipments']['late_deliveries']} late ({dashboard['performance_summary']['delivery_on_time']} on-time)")
print(f" Exceptions: {dashboard['kpis']['exceptions']['open']} open ({dashboard['kpis']['exceptions']['high_severity']} high severity)")
print(f" Alerts: {dashboard['alerts']['new_alerts']} new alerts requiring action")
# Get exceptions
exceptions_dashboard = control_tower.get_exceptions_dashboard()
print(f"\n\nOpen High-Priority Exceptions:")
if not exceptions_dashboard['open_high_priority'].empty:
print(exceptions_dashboard['open_high_priority'][['exception_id', 'type', 'description', 'severity']])
# Get alerts
alerts = control_tower.get_alerts_requiring_action()
print(f"\n\nAlerts Requiring Action:")
if not alerts.empty:
print(alerts[['alert_id', 'type', 'severity', 'message']])
Tools & Libraries
Python Libraries
Data Processing:
pandas: Data manipulationnumpy: Numerical computationssqlalchemy: Database connections
Real-Time Processing:
kafka-python: Apache Kafka integrationpaho-mqtt: MQTT messagingredis: Real-time data store
Visualization:
dash: Interactive dashboardsplotly: Interactive chartsstreamlit: Dashboard appsbokeh: Real-time visualizations
APIs & Integration:
requests: HTTP requestsfastapi: API developmentflask: Web framework
Commercial Software
Control Tower Platforms:
- Blue Yonder (JDA): Luminate Control Tower
- Kinaxis: RapidResponse
- o9 Solutions: Digital brain platform
- E2open: Control tower platform
- SAP: Integrated Business Planning with Control Tower
- Oracle: Supply Chain Management Cloud
Visibility Platforms:
- FourKites: Real-time visibility
- project44: Transportation visibility
- Shippeo: Supply chain visibility
- ClearMetal: Predictive logistics
- Descartes MacroPoint: Load tracking
Integration & IoT:
- MuleSoft: API integration
- Boomi: Integration platform
- PTC ThingWorx: IoT platform
- AWS IoT: IoT services
Common Challenges & Solutions
Challenge: Data Integration Complexity
Problem:
- Multiple disparate systems
- Different data formats and standards
- Real-time vs. batch data
- Data quality issues
Solutions:
- Phased integration approach (start with critical systems)
- Master data management (MDM)
- API-first architecture
- Data quality rules and validation
- Middleware/integration platform
- Standardized data models
Challenge: Organization Silos
Problem:
- Resistance to centralized control
- Competing priorities
- Lack of collaboration culture
- Unclear ownership
Solutions:
- Executive sponsorship and governance
- Cross-functional team structure
- Clear roles and responsibilities (RACI)
- Shared KPIs and incentives
- Change management program
- Quick wins to demonstrate value
Challenge: Alert Fatigue
Problem:
- Too many alerts
- False positives
- Important signals missed
- Reduced responsiveness
Solutions:
- Intelligent alert thresholds
- Machine learning for anomaly detection
- Alert prioritization and routing
- Escalation rules
- Alert aggregation and suppression
- Continuous tuning
Challenge: ROI Justification
Problem:
- High implementation costs
- Intangible benefits
- Long payback period
- Competing investments
Solutions:
- Start with pilot (limited scope)
- Quantify benefits (cost savings, revenue protection)
- Benchmark against manual processes
- Value case studies and references
- Phased investment approach
- Track and communicate wins
Challenge: User Adoption
Problem:
- Resistance to new tools
- Workflow disruption
- Training requirements
- Habit change needed
Solutions:
- User-centric design
- Training and enablement
- Change champions
- Gradual rollout
- Continuous improvement based on feedback
- Gamification and incentives
Challenge: Scalability
Problem:
- Growing data volumes
- More users and use cases
- Performance degradation
- Infrastructure costs
Solutions:
- Cloud-based architecture
- Microservices design
- Data archiving and retention policies
- Performance optimization
- Horizontal scaling
- Cost monitoring and optimization
Output Format
Control Tower Dashboard
Executive Summary:
- Overall supply chain health score
- Critical alerts requiring action
- Key performance trends
- Major disruptions or risks
KPI Scoreboard:
| KPI | Current | Target | Trend | Status |
|---|---|---|---|---|
| Order Fill Rate | 94.2% | 96.0% | ↘ -1.2% | ⚠ Below |
| On-Time Delivery | 89.5% | 92.0% | ↗ +0.8% | ⚠ Below |
| Perfect Order % | 85.3% | 90.0% | → 0.0% | ⚠ Below |
| Order Cycle Time | 4.2 days | 4.0 days | ↗ +0.1 | ⚠ Above |
| Supply Chain Cost as % Revenue | 8.2% | 8.0% | ↘ -0.2% | ✓ On Track |
Exception Summary:
| Category | Open | Critical | High | Medium | Aging (>48h) |
|---|---|---|---|---|---|
| Orders | 23 | 3 | 8 | 12 | 5 |
| Shipments | 18 | 2 | 6 | 10 | 3 |
| Inventory | 12 | 1 | 4 | 7 | 2 |
| Suppliers | 8 | 0 | 3 | 5 | 1 |
| Total | 61 | 6 | 21 | 34 | 11 |
Critical Alerts:
| Alert ID | Time | Type | Description | Assigned To | Status |
|---|---|---|---|---|---|
| ALT-0042 | 08:15 | Shipment Delayed | Container stuck at port - 50 orders affected | John D. | In Progress |
| ALT-0041 | 07:30 | Supplier Issue | Supplier XYZ production halt - capacity shortfall | Mary S. | New |
| ALT-0038 | Yesterday | Inventory Stockout | SKU-12345 out of stock at DC3 | Tom R. | Resolving |
Shipment Tracking:
| Shipment ID | Origin | Destination | Status | ETA | Delay | Risk |
|---|---|---|---|---|---|---|
| SHP-10234 | Shanghai | LA Port | In Transit | Jan 28 | On Time | ✓ Low |
| SHP-10235 | Mumbai | NY Port | Delayed | Jan 30 | +3 days | ⚠ High |
| SHP-10236 | Hamburg | Chicago | Customs Hold | TBD | +5 days | ⚠⚠ Critical |
Supplier Performance:
| Supplier | On-Time Delivery | Quality | Lead Time | Risk Score | Trending |
|---|---|---|---|---|---|
| Supplier A | 96.2% | 99.8% | 12 days | Low | ✓ Improving |
| Supplier B | 88.5% | 97.2% | 18 days | Medium | ⚠ Declining |
| Supplier C | 92.1% | 95.5% | 15 days | High | → Stable |
Questions to Ask
If you need more context:
- What business problem is the control tower solving?
- What scope of operations to cover? (planning, execution, logistics, etc.)
- What data sources need integration? (ERP, TMS, WMS, suppliers, etc.)
- What are the critical KPIs to monitor?
- Who are the users and stakeholders?
- What's the current visibility and monitoring maturity?
- What technology infrastructure exists?
- What's the budget and timeline?
- Is this internal or extended (suppliers, customers)?
- What are the success criteria?
Related Skills
- track-and-trace: For product and shipment tracking
- supplier-collaboration: For supplier integration and communication
- demand-supply-matching: For demand-supply balancing
- risk-mitigation: For disruption monitoring and response
- network-design: For optimizing control tower scope
- inventory-optimization: For inventory visibility and management
- route-optimization: For transportation monitoring
- demand-forecasting: For demand visibility integration
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
