Back to Skills

flow-nexus-neural

natea
Updated Today
12 views
1
2
1
View on GitHub
Otherneural-networksdistributed-trainingmachine-learningdeep-learningflow-nexuse2b-sandboxes

About

Flow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports custom architectures like feedforward, LSTM, GAN, and transformer networks, plus pre-built templates. Use this skill when you need to manage scalable, distributed machine learning training workflows directly from your Claude environment.

Documentation

Flow Nexus Neural Networks

Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace.

Prerequisites

# Add Flow Nexus MCP server
claude mcp add flow-nexus npx flow-nexus@latest mcp start

# Register and login
npx flow-nexus@latest register
npx flow-nexus@latest login

Core Capabilities

1. Single-Node Neural Training

Train neural networks with custom architectures and configurations.

Available Architectures:

  • feedforward - Standard fully-connected networks
  • lstm - Long Short-Term Memory for sequences
  • gan - Generative Adversarial Networks
  • autoencoder - Dimensionality reduction
  • transformer - Attention-based models

Training Tiers:

  • nano - Minimal resources (fast, limited)
  • mini - Small models
  • small - Standard models
  • medium - Complex models
  • large - Large-scale training

Example: Train Custom Classifier

mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "feedforward",
      layers: [
        { type: "dense", units: 256, activation: "relu" },
        { type: "dropout", rate: 0.3 },
        { type: "dense", units: 128, activation: "relu" },
        { type: "dropout", rate: 0.2 },
        { type: "dense", units: 64, activation: "relu" },
        { type: "dense", units: 10, activation: "softmax" }
      ]
    },
    training: {
      epochs: 100,
      batch_size: 32,
      learning_rate: 0.001,
      optimizer: "adam"
    },
    divergent: {
      enabled: true,
      pattern: "lateral", // quantum, chaotic, associative, evolutionary
      factor: 0.5
    }
  },
  tier: "small",
  user_id: "your_user_id"
})

Example: LSTM for Time Series

mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "lstm",
      layers: [
        { type: "lstm", units: 128, return_sequences: true },
        { type: "dropout", rate: 0.2 },
        { type: "lstm", units: 64 },
        { type: "dense", units: 1, activation: "linear" }
      ]
    },
    training: {
      epochs: 150,
      batch_size: 64,
      learning_rate: 0.01,
      optimizer: "adam"
    }
  },
  tier: "medium"
})

Example: Transformer Architecture

mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "transformer",
      layers: [
        { type: "embedding", vocab_size: 10000, embedding_dim: 512 },
        { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
        { type: "global_average_pooling" },
        { type: "dense", units: 128, activation: "relu" },
        { type: "dense", units: 2, activation: "softmax" }
      ]
    },
    training: {
      epochs: 50,
      batch_size: 16,
      learning_rate: 0.0001,
      optimizer: "adam"
    }
  },
  tier: "large"
})

2. Model Inference

Run predictions on trained models.

mcp__flow-nexus__neural_predict({
  model_id: "model_abc123",
  input: [
    [0.5, 0.3, 0.2, 0.1],
    [0.8, 0.1, 0.05, 0.05],
    [0.2, 0.6, 0.15, 0.05]
  ],
  user_id: "your_user_id"
})

Response:

{
  "predictions": [
    [0.12, 0.85, 0.03],
    [0.89, 0.08, 0.03],
    [0.05, 0.92, 0.03]
  ],
  "inference_time_ms": 45,
  "model_version": "1.0.0"
}

3. Template Marketplace

Browse and deploy pre-trained models from the marketplace.

List Available Templates

mcp__flow-nexus__neural_list_templates({
  category: "classification", // timeseries, regression, nlp, vision, anomaly, generative
  tier: "free", // or "paid"
  search: "sentiment",
  limit: 20
})

Response:

{
  "templates": [
    {
      "id": "sentiment-analysis-v2",
      "name": "Sentiment Analysis Classifier",
      "description": "Pre-trained BERT model for sentiment analysis",
      "category": "nlp",
      "accuracy": 0.94,
      "downloads": 1523,
      "tier": "free"
    },
    {
      "id": "image-classifier-resnet",
      "name": "ResNet Image Classifier",
      "description": "ResNet-50 for image classification",
      "category": "vision",
      "accuracy": 0.96,
      "downloads": 2341,
      "tier": "paid"
    }
  ]
}

Deploy Template

mcp__flow-nexus__neural_deploy_template({
  template_id: "sentiment-analysis-v2",
  custom_config: {
    training: {
      epochs: 50,
      learning_rate: 0.0001
    }
  },
  user_id: "your_user_id"
})

4. Distributed Training Clusters

Train large models across multiple E2B sandboxes with distributed computing.

Initialize Cluster

mcp__flow-nexus__neural_cluster_init({
  name: "large-model-cluster",
  architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
  topology: "mesh", // mesh, ring, star, hierarchical
  consensus: "proof-of-learning", // byzantine, raft, gossip
  daaEnabled: true, // Decentralized Autonomous Agents
  wasmOptimization: true
})

Response:

{
  "cluster_id": "cluster_xyz789",
  "name": "large-model-cluster",
  "status": "initializing",
  "topology": "mesh",
  "max_nodes": 100,
  "created_at": "2025-10-19T10:30:00Z"
}

Deploy Worker Nodes

// Deploy parameter server
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "parameter_server",
  model: "large",
  template: "nodejs",
  capabilities: ["parameter_management", "gradient_aggregation"],
  autonomy: 0.8
})

// Deploy worker nodes
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "worker",
  model: "xl",
  role: "worker",
  capabilities: ["training", "inference"],
  layers: [
    { type: "transformer_encoder", num_heads: 16 },
    { type: "feed_forward", units: 4096 }
  ],
  autonomy: 0.9
})

// Deploy aggregator
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "aggregator",
  model: "large",
  capabilities: ["gradient_aggregation", "model_synchronization"]
})

Connect Cluster Topology

mcp__flow-nexus__neural_cluster_connect({
  cluster_id: "cluster_xyz789",
  topology: "mesh" // Override default if needed
})

Start Distributed Training

mcp__flow-nexus__neural_train_distributed({
  cluster_id: "cluster_xyz789",
  dataset: "imagenet", // or custom dataset identifier
  epochs: 100,
  batch_size: 128,
  learning_rate: 0.001,
  optimizer: "adam", // sgd, rmsprop, adagrad
  federated: true // Enable federated learning
})

Federated Learning Example:

mcp__flow-nexus__neural_train_distributed({
  cluster_id: "cluster_xyz789",
  dataset: "medical_images_distributed",
  epochs: 200,
  batch_size: 64,
  learning_rate: 0.0001,
  optimizer: "adam",
  federated: true, // Data stays on local nodes
  aggregation_rounds: 50,
  min_nodes_per_round: 5
})

Monitor Cluster Status

mcp__flow-nexus__neural_cluster_status({
  cluster_id: "cluster_xyz789"
})

Response:

{
  "cluster_id": "cluster_xyz789",
  "status": "training",
  "nodes": [
    {
      "node_id": "node_001",
      "type": "parameter_server",
      "status": "active",
      "cpu_usage": 0.75,
      "memory_usage": 0.82
    },
    {
      "node_id": "node_002",
      "type": "worker",
      "status": "active",
      "training_progress": 0.45
    }
  ],
  "training_metrics": {
    "current_epoch": 45,
    "total_epochs": 100,
    "loss": 0.234,
    "accuracy": 0.891
  }
}

Run Distributed Inference

mcp__flow-nexus__neural_predict_distributed({
  cluster_id: "cluster_xyz789",
  input_data: JSON.stringify([
    [0.1, 0.2, 0.3],
    [0.4, 0.5, 0.6]
  ]),
  aggregation: "ensemble" // mean, majority, weighted, ensemble
})

Terminate Cluster

mcp__flow-nexus__neural_cluster_terminate({
  cluster_id: "cluster_xyz789"
})

5. Model Management

List Your Models

mcp__flow-nexus__neural_list_models({
  user_id: "your_user_id",
  include_public: true
})

Response:

{
  "models": [
    {
      "model_id": "model_abc123",
      "name": "Custom Classifier v1",
      "architecture": "feedforward",
      "accuracy": 0.92,
      "created_at": "2025-10-15T14:20:00Z",
      "status": "trained"
    },
    {
      "model_id": "model_def456",
      "name": "LSTM Forecaster",
      "architecture": "lstm",
      "mse": 0.0045,
      "created_at": "2025-10-18T09:15:00Z",
      "status": "training"
    }
  ]
}

Check Training Status

mcp__flow-nexus__neural_training_status({
  job_id: "job_training_xyz"
})

Response:

{
  "job_id": "job_training_xyz",
  "status": "training",
  "progress": 0.67,
  "current_epoch": 67,
  "total_epochs": 100,
  "current_loss": 0.234,
  "estimated_completion": "2025-10-19T12:45:00Z"
}

Performance Benchmarking

mcp__flow-nexus__neural_performance_benchmark({
  model_id: "model_abc123",
  benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
})

Response:

{
  "model_id": "model_abc123",
  "benchmarks": {
    "inference_latency_ms": 12.5,
    "throughput_qps": 8000,
    "memory_usage_mb": 245,
    "gpu_utilization": 0.78,
    "accuracy": 0.92,
    "f1_score": 0.89
  },
  "timestamp": "2025-10-19T11:00:00Z"
}

Create Validation Workflow

mcp__flow-nexus__neural_validation_workflow({
  model_id: "model_abc123",
  user_id: "your_user_id",
  validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive
})

6. Publishing and Marketplace

Publish Model as Template

mcp__flow-nexus__neural_publish_template({
  model_id: "model_abc123",
  name: "High-Accuracy Sentiment Classifier",
  description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy",
  category: "nlp",
  price: 0, // 0 for free, or credits amount
  user_id: "your_user_id"
})

Rate a Template

mcp__flow-nexus__neural_rate_template({
  template_id: "sentiment-analysis-v2",
  rating: 5,
  review: "Excellent model! Achieved 95% accuracy on my dataset.",
  user_id: "your_user_id"
})

Common Use Cases

Image Classification with CNN

// Initialize cluster for large-scale image training
const cluster = await mcp__flow-nexus__neural_cluster_init({
  name: "image-classification-cluster",
  architecture: "cnn",
  topology: "hierarchical",
  wasmOptimization: true
})

// Deploy worker nodes
await mcp__flow-nexus__neural_node_deploy({
  cluster_id: cluster.cluster_id,
  node_type: "worker",
  model: "large",
  capabilities: ["training", "data_augmentation"]
})

// Start training
await mcp__flow-nexus__neural_train_distributed({
  cluster_id: cluster.cluster_id,
  dataset: "custom_images",
  epochs: 100,
  batch_size: 64,
  learning_rate: 0.001,
  optimizer: "adam"
})

NLP Sentiment Analysis

// Use pre-built template
const deployment = await mcp__flow-nexus__neural_deploy_template({
  template_id: "sentiment-analysis-v2",
  custom_config: {
    training: {
      epochs: 30,
      batch_size: 16
    }
  }
})

// Run inference
const result = await mcp__flow-nexus__neural_predict({
  model_id: deployment.model_id,
  input: ["This product is amazing!", "Terrible experience."]
})

Time Series Forecasting

// Train LSTM model
const training = await mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "lstm",
      layers: [
        { type: "lstm", units: 128, return_sequences: true },
        { type: "dropout", rate: 0.2 },
        { type: "lstm", units: 64 },
        { type: "dense", units: 1 }
      ]
    },
    training: {
      epochs: 150,
      batch_size: 64,
      learning_rate: 0.01,
      optimizer: "adam"
    }
  },
  tier: "medium"
})

// Monitor progress
const status = await mcp__flow-nexus__neural_training_status({
  job_id: training.job_id
})

Federated Learning for Privacy

// Initialize federated cluster
const cluster = await mcp__flow-nexus__neural_cluster_init({
  name: "federated-medical-cluster",
  architecture: "transformer",
  topology: "mesh",
  consensus: "proof-of-learning",
  daaEnabled: true
})

// Deploy nodes across different locations
for (let i = 0; i < 5; i++) {
  await mcp__flow-nexus__neural_node_deploy({
    cluster_id: cluster.cluster_id,
    node_type: "worker",
    model: "large",
    autonomy: 0.9
  })
}

// Train with federated learning (data never leaves nodes)
await mcp__flow-nexus__neural_train_distributed({
  cluster_id: cluster.cluster_id,
  dataset: "medical_records_distributed",
  epochs: 200,
  federated: true,
  aggregation_rounds: 100
})

Architecture Patterns

Feedforward Networks

Best for: Classification, regression, simple pattern recognition

{
  type: "feedforward",
  layers: [
    { type: "dense", units: 256, activation: "relu" },
    { type: "dropout", rate: 0.3 },
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: 10, activation: "softmax" }
  ]
}

LSTM Networks

Best for: Time series, sequences, forecasting

{
  type: "lstm",
  layers: [
    { type: "lstm", units: 128, return_sequences: true },
    { type: "lstm", units: 64 },
    { type: "dense", units: 1 }
  ]
}

Transformers

Best for: NLP, attention mechanisms, large-scale text

{
  type: "transformer",
  layers: [
    { type: "embedding", vocab_size: 10000, embedding_dim: 512 },
    { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
    { type: "global_average_pooling" },
    { type: "dense", units: 2, activation: "softmax" }
  ]
}

GANs

Best for: Generative tasks, image synthesis

{
  type: "gan",
  generator_layers: [...],
  discriminator_layers: [...]
}

Autoencoders

Best for: Dimensionality reduction, anomaly detection

{
  type: "autoencoder",
  encoder_layers: [
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: 64, activation: "relu" }
  ],
  decoder_layers: [
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: input_dim, activation: "sigmoid" }
  ]
}

Best Practices

  1. Start Small: Begin with nano or mini tiers for experimentation
  2. Use Templates: Leverage marketplace templates for common tasks
  3. Monitor Training: Check status regularly to catch issues early
  4. Benchmark Models: Always benchmark before production deployment
  5. Distributed Training: Use clusters for large models (>1B parameters)
  6. Federated Learning: Use for privacy-sensitive data
  7. Version Models: Publish successful models as templates for reuse
  8. Validate Thoroughly: Use validation workflows before deployment

Troubleshooting

Training Stalled

// Check cluster status
const status = await mcp__flow-nexus__neural_cluster_status({
  cluster_id: "cluster_id"
})

// Terminate and restart if needed
await mcp__flow-nexus__neural_cluster_terminate({
  cluster_id: "cluster_id"
})

Low Accuracy

  • Increase epochs
  • Adjust learning rate
  • Add regularization (dropout)
  • Try different optimizer
  • Use data augmentation

Out of Memory

  • Reduce batch size
  • Use smaller model tier
  • Enable gradient accumulation
  • Use distributed training

Related Skills

  • flow-nexus-sandbox - E2B sandbox management
  • flow-nexus-swarm - AI swarm orchestration
  • flow-nexus-workflow - Workflow automation

Resources


Note: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use npx flow-nexus@latest register.

Quick Install

/plugin add https://github.com/natea/fitfinder/tree/main/flow-nexus-neural

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

natea/fitfinder
Path: .claude/skills/flow-nexus-neural

Related Skills

pytorch-fsdp

Design

This Claude Skill provides expert guidance for PyTorch Fully Sharded Data Parallel (FSDP) training, helping developers implement distributed training solutions. It covers key features like parameter sharding, mixed precision, CPU offloading, and FSDP2 for large-scale model training. Use this skill when working with FSDP APIs, debugging distributed training code, or learning best practices for sharded data parallelism.

View skill

deepspeed

Design

This skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.

View skill

when-optimizing-agent-learning-use-reasoningbank-intelligence

Other

This skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.

View skill

flow-nexus-neural

Other

Flow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports multiple architectures including feedforward, LSTM, GAN, and transformer models, with options for custom training or pre-built templates. Use this skill when you need scalable, sandboxed environments for machine learning development and deployment.

View skill