when-analyzing-user-intent-use-intent-analyzer
About
This skill analyzes ambiguous user requests using cognitive science principles and probabilistic mapping to clarify intent. It automatically generates targeted questions to resolve uncertainties and produces actionable task definitions. Use it when handling complex, vague, or multi-part user instructions that require disambiguation.
Documentation
Intent Analyzer - Advanced User Intent Interpretation
Overview
Advanced intent interpretation system that analyzes user requests using cognitive science principles and extrapolates logical volition. Use when user requests are ambiguous, when deeper understanding would improve response quality, or when helping users clarify what they truly need.
When to Use This Skill
- User request is vague or ambiguous
- Multiple interpretations are possible
- High-stakes decision requires clarity
- User may not know exactly what they need
- Complex requirements need decomposition
- Implicit assumptions need surfacing
Theoretical Foundation
Cognitive Science Principles
- Probabilistic Intent Mapping: Assign likelihood scores to possible interpretations
- First Principles Decomposition: Break complex requests into fundamental components
- Socratic Clarification: Ask targeted questions to narrow possibilities
- Context Integration: Leverage environment and history for disambiguation
- Volition Extrapolation: Infer underlying goals beyond stated request
Evidence-Based Patterns
- Self-Consistency: Generate multiple interpretations and find consensus
- Chain-of-Thought: Trace reasoning from input to understanding
- Program-of-Thought: Structure analysis as executable logic
- Plan-and-Solve: Decompose understanding into steps
Phase 1: Capture User Input
Objective
Gather complete user request with full context
Agent Coordination
# Pre-task hook
npx claude-flow@alpha hooks pre-task \
--description "Capture user input for intent analysis" \
--complexity "low" \
--expected-duration "2min"
# Session restore
npx claude-flow@alpha hooks session-restore \
--session-id "intent-analyzer-${TIMESTAMP}"
Implementation
Step 1.1: Extract Raw Input
const userInput = {
request: "[User's exact words]",
context: {
environment: process.env,
workingDirectory: process.cwd(),
recentHistory: [] // Last 5 interactions
},
timestamp: new Date().toISOString()
};
// Store in memory
await memory.store('intent/raw-input', userInput);
Step 1.2: Identify Input Characteristics
const characteristics = {
length: userInput.request.split(' ').length,
hasMultipleParts: /and|then|also|additionally/i.test(userInput.request),
containsQuestions: /\?/.test(userInput.request),
specificityScore: calculateSpecificity(userInput.request),
domainIndicators: extractDomains(userInput.request)
};
await memory.store('intent/characteristics', characteristics);
Step 1.3: Gather Context Clues
const contextClues = {
fileSystem: await analyzeFileSystem(),
recentEdits: await getRecentEdits(),
projectType: await inferProjectType(),
userExpertise: await estimateExpertiseLevel()
};
await memory.store('intent/context-clues', contextClues);
Validation Criteria
- Complete user request captured
- Context information gathered
- Characteristics identified
- Memory storage confirmed
Memory Pattern
# Store phase completion
npx claude-flow@alpha hooks post-edit \
--file "memory://intent/raw-input" \
--memory-key "intent-analyzer/phase1/completion"
Phase 2: Decompose Intent
Objective
Break down request into fundamental components using first principles
Agent: Researcher
Step 2.1: Tokenize Request
const tokens = {
actions: extractActionVerbs(userInput.request),
subjects: extractSubjects(userInput.request),
constraints: extractConstraints(userInput.request),
outcomes: extractDesiredOutcomes(userInput.request)
};
// Example output:
// {
// actions: ['create', 'optimize', 'test'],
// subjects: ['API', 'database', 'authentication'],
// constraints: ['must be secure', 'under 100ms'],
// outcomes: ['production-ready', 'scalable']
// }
Step 2.2: Build Component Tree
const componentTree = {
primary: {
intent: inferPrimaryIntent(tokens),
confidence: 0.85
},
secondary: tokens.actions.slice(1).map(action => ({
intent: action,
confidence: 0.60
})),
implicit: inferImplicitRequirements(tokens, contextClues)
};
await memory.store('intent/component-tree', componentTree);
Step 2.3: Identify Dependencies
const dependencies = {
sequential: findSequentialDeps(componentTree),
parallel: findParallelDeps(componentTree),
conditional: findConditionalDeps(componentTree)
};
// Example:
// {
// sequential: ['database schema' -> 'API endpoints' -> 'tests'],
// parallel: ['frontend', 'backend'],
// conditional: ['if authentication: setup OAuth']
// }
Validation Criteria
- All action verbs identified
- Component tree constructed
- Dependencies mapped
- Implicit requirements surfaced
Script Template
#!/bin/bash
# decompose-intent.sh
INPUT_FILE="$1"
OUTPUT_FILE="$2"
# Read user input
USER_REQUEST=$(cat "$INPUT_FILE")
# Decompose using researcher agent
npx claude-flow@alpha agent-spawn \
--type researcher \
--task "Decompose this request into components: $USER_REQUEST" \
--output "$OUTPUT_FILE"
# Store results
npx claude-flow@alpha hooks post-edit \
--file "$OUTPUT_FILE" \
--memory-key "intent-analyzer/decomposition"
Phase 3: Map Probabilities
Objective
Assign likelihood scores to possible interpretations
Agent: Analyst
Step 3.1: Generate Interpretation Candidates
const interpretations = [
{
id: 'interp-1',
description: 'User wants a complete REST API with authentication',
probability: 0.75,
evidence: ['mentions API', 'security constraint'],
assumptions: ['Express.js framework', 'JWT auth']
},
{
id: 'interp-2',
description: 'User wants to add auth to existing API',
probability: 0.20,
evidence: ['existing project detected'],
assumptions: ['API already exists']
},
{
id: 'interp-3',
description: 'User wants auth documentation/research',
probability: 0.05,
evidence: ['vague phrasing'],
assumptions: ['exploratory phase']
}
];
await memory.store('intent/interpretations', interpretations);
Step 3.2: Apply Bayesian Reasoning
function updateProbabilities(interpretations, newEvidence) {
return interpretations.map(interp => {
const priorProb = interp.probability;
const likelihoodGivenEvidence = calculateLikelihood(interp, newEvidence);
const posteriorProb = (priorProb * likelihoodGivenEvidence) /
calculateNormalization(interpretations, newEvidence);
return { ...interp, probability: posteriorProb };
});
}
const updatedInterpretations = updateProbabilities(interpretations, contextClues);
Step 3.3: Rank by Confidence
const rankedInterpretations = updatedInterpretations
.sort((a, b) => b.probability - a.probability)
.map((interp, index) => ({
...interp,
rank: index + 1,
confidenceLevel: interp.probability > 0.8 ? 'HIGH' :
interp.probability > 0.5 ? 'MEDIUM' : 'LOW'
}));
await memory.store('intent/ranked-interpretations', rankedInterpretations);
Validation Criteria
- At least 3 interpretations generated
- Probabilities sum to ~1.0
- Evidence listed for each interpretation
- Confidence levels assigned
Memory Pattern
# Store probability analysis
npx claude-flow@alpha hooks post-task \
--task-id "probability-mapping" \
--metrics '{"interpretations": 3, "top_confidence": 0.75}'
Phase 4: Clarify Ambiguities
Objective
Ask targeted questions to resolve uncertainty
Agent: Planner
Step 4.1: Identify Decision Points
const ambiguities = rankedInterpretations.flatMap(interp => {
if (interp.probability < 0.8 && interp.rank <= 2) {
return interp.assumptions.map(assumption => ({
interpretation: interp.id,
assumption: assumption,
impact: calculateImpact(assumption),
question: generateClarifyingQuestion(assumption)
}));
}
return [];
});
// Example output:
// {
// interpretation: 'interp-1',
// assumption: 'Express.js framework',
// impact: 'HIGH',
// question: 'Which framework would you prefer: Express.js, Fastify, or NestJS?'
// }
Step 4.2: Prioritize Questions
const prioritizedQuestions = ambiguities
.sort((a, b) => {
// Sort by: HIGH impact first, then by interpretation probability
if (a.impact !== b.impact) {
return b.impact === 'HIGH' ? 1 : -1;
}
const interpA = rankedInterpretations.find(i => i.id === a.interpretation);
const interpB = rankedInterpretations.find(i => i.id === b.interpretation);
return interpB.probability - interpA.probability;
})
.slice(0, 3); // Max 3 questions to avoid overwhelming user
await memory.store('intent/questions', prioritizedQuestions);
Step 4.3: Format Questions for User
const questionSet = {
header: `I want to make sure I understand your request correctly. Can you clarify:`,
questions: prioritizedQuestions.map((q, i) => ({
number: i + 1,
text: q.question,
options: generateOptions(q.assumption),
rationale: `This helps determine: ${q.impact.toLowerCase()} impact on ${q.interpretation}`
})),
footer: `These clarifications will help me provide exactly what you need.`
};
// Present to user
console.log(formatQuestionSet(questionSet));
Step 4.4: Process User Responses
async function processResponses(responses) {
// Update interpretation probabilities based on answers
const refinedInterpretations = rankedInterpretations.map(interp => {
let newProb = interp.probability;
responses.forEach(response => {
if (response.confirmsAssumption(interp)) {
newProb *= 1.5; // Boost probability
} else if (response.contradicsAssumption(interp)) {
newProb *= 0.3; // Reduce probability
}
});
return { ...interp, probability: newProb };
});
// Re-normalize probabilities
const total = refinedInterpretations.reduce((sum, i) => sum + i.probability, 0);
const normalized = refinedInterpretations.map(i => ({
...i,
probability: i.probability / total
}));
await memory.store('intent/refined-interpretations', normalized);
return normalized;
}
Validation Criteria
- High-impact ambiguities identified
- Questions prioritized effectively
- User responses processed
- Probabilities updated
Script Template
#!/bin/bash
# clarify-ambiguities.sh
INTERPRETATIONS_FILE="$1"
# Generate clarifying questions
QUESTIONS=$(npx claude-flow@alpha agent-spawn \
--type planner \
--task "Generate clarifying questions from: $(cat $INTERPRETATIONS_FILE)")
# Present to user (interactive)
echo "$QUESTIONS"
echo ""
echo "Your responses:"
read -p "1. " RESPONSE_1
read -p "2. " RESPONSE_2
read -p "3. " RESPONSE_3
# Store responses
cat > responses.json <<EOF
{
"responses": [
{"question": 1, "answer": "$RESPONSE_1"},
{"question": 2, "answer": "$RESPONSE_2"},
{"question": 3, "answer": "$RESPONSE_3"}
],
"timestamp": "$(date -Iseconds)"
}
EOF
npx claude-flow@alpha hooks post-edit \
--file "responses.json" \
--memory-key "intent-analyzer/user-responses"
Phase 5: Synthesize Understanding
Objective
Form clear, actionable interpretation with user confirmation
Agent: Analyst + Planner
Step 5.1: Select Final Interpretation
const finalInterpretation = refinedInterpretations
.sort((a, b) => b.probability - a.probability)[0];
const synthesis = {
understanding: finalInterpretation.description,
confidence: finalInterpretation.probability,
breakdown: {
primaryGoal: extractPrimaryGoal(finalInterpretation),
subTasks: extractSubTasks(finalInterpretation),
constraints: finalInterpretation.evidence,
assumptions: finalInterpretation.assumptions
},
actionPlan: generateActionPlan(finalInterpretation)
};
await memory.store('intent/final-synthesis', synthesis);
Step 5.2: Generate Confirmation Statement
const confirmation = {
summary: `Based on your input, I understand you want to: ${synthesis.understanding}`,
details: {
scope: synthesis.breakdown.primaryGoal,
approach: synthesis.actionPlan.strategy,
deliverables: synthesis.actionPlan.outputs
},
confidence: `I'm ${(synthesis.confidence * 100).toFixed(0)}% confident in this interpretation.`,
verification: `Does this match your expectations? If not, please let me know what I misunderstood.`
};
// Present to user
console.log(formatConfirmation(confirmation));
Step 5.3: Create Execution Brief
const executionBrief = {
metadata: {
skillName: 'intent-analyzer',
timestamp: new Date().toISOString(),
confidence: synthesis.confidence
},
userIntent: {
original: userInput.request,
interpreted: synthesis.understanding,
clarifications: questionSet.questions.length
},
actionPlan: {
phases: synthesis.actionPlan.phases,
agents: synthesis.actionPlan.requiredAgents,
estimatedDuration: synthesis.actionPlan.duration,
dependencies: synthesis.actionPlan.dependencies
},
successCriteria: synthesis.actionPlan.successCriteria,
riskFactors: identifyRisks(synthesis)
};
await memory.store('intent/execution-brief', executionBrief);
// Export for next workflow
await fs.writeFile(
'/tmp/intent-analysis-result.json',
JSON.stringify(executionBrief, null, 2)
);
Step 5.4: Handoff to Execution
// If confidence is high, prepare for immediate execution
if (synthesis.confidence > 0.85) {
console.log('\n✅ High confidence understanding achieved.');
console.log('Ready to proceed with execution.');
// Generate TodoWrite for execution phase
const todos = executionBrief.actionPlan.phases.map((phase, i) => ({
id: `exec-${i + 1}`,
content: phase.description,
status: i === 0 ? 'in_progress' : 'pending',
activeForm: phase.activeDescription,
priority: phase.priority,
agent: phase.assignedAgent
}));
// Output todos for execution
console.log('\nGenerated execution plan:');
console.log(JSON.stringify(todos, null, 2));
} else {
console.log('\n⚠️ Confidence below threshold. Recommend additional clarification.');
}
Validation Criteria
- Final interpretation selected (confidence > 0.8)
- User confirmation obtained
- Execution brief created
- Handoff to next workflow prepared
Memory Pattern
# Session completion
npx claude-flow@alpha hooks session-end \
--session-id "intent-analyzer-${TIMESTAMP}" \
--export-metrics true \
--summary "Intent analysis completed with ${CONFIDENCE}% confidence"
# Store final results
npx claude-flow@alpha hooks post-task \
--task-id "intent-synthesis" \
--output "/tmp/intent-analysis-result.json"
Success Metrics
Quantitative
- Interpretation confidence score > 0.8
- Number of clarifying questions asked < 5
- User confirmation obtained: YES/NO
- Time to resolution < 30 minutes
Qualitative
- User expresses satisfaction with understanding
- No major revisions needed after confirmation
- Action plan is clear and executable
- Ambiguities resolved effectively
Common Patterns
Pattern 1: Multi-Part Request
// When user request has multiple independent goals
if (componentTree.primary.length > 1) {
// Decompose into separate intent analyses
const subIntents = componentTree.primary.map(async (component) => {
return await analyzeIntent(component, contextClues);
});
// Synthesize into coordinated plan
const coordinatedPlan = synthesizeMultiIntent(await Promise.all(subIntents));
}
Pattern 2: Vague Request
// When specificity score is low
if (characteristics.specificityScore < 0.4) {
// Use more Socratic questioning
const questions = generateOpenEndedQuestions(userInput);
// Iterate until specificity improves
while (getCurrentSpecificity() < 0.6) {
const response = await askUser(questions.shift());
updateInterpretations(response);
}
}
Pattern 3: Expert User
// When user expertise level is high
if (contextClues.userExpertise === 'expert') {
// Skip basic clarifications
const technicalInterpretations = interpretations.filter(
i => i.technicalDepth === 'advanced'
);
// Assume technical knowledge
const brief = generateTechnicalBrief(technicalInterpretations[0]);
}
Troubleshooting
Issue: Low Confidence After Clarification
Solution: Request specific examples from user
if (synthesis.confidence < 0.7 && clarificationRound > 1) {
console.log('Could you provide a specific example of what you want?');
const example = await getUserExample();
interpretations = refineWithExample(interpretations, example);
}
Issue: Contradictory User Responses
Solution: Highlight contradiction and ask for priority
const contradictions = detectContradictions(responses);
if (contradictions.length > 0) {
console.log(`I notice some conflicting requirements: ${contradictions}`);
console.log('Which is more important to you?');
const priority = await getUserPriority(contradictions);
}
Issue: Too Many Interpretations
Solution: Focus on top 2 and ask direct choice
if (rankedInterpretations[1].probability > 0.3) {
console.log('I see two main possibilities:');
console.log(`A) ${rankedInterpretations[0].description}`);
console.log(`B) ${rankedInterpretations[1].description}`);
console.log('Which better matches your intent?');
}
Integration Examples
With SPARC Workflow
# Use intent analyzer before SPARC specification phase
npx claude-flow@alpha skill-run intent-analyzer \
--input "user-request.txt" \
--output "/tmp/intent-brief.json"
# Feed result to SPARC
npx claude-flow@alpha sparc run spec-pseudocode \
--context "/tmp/intent-brief.json"
With Cascade Orchestrator
// Integrate as first step in cascade
const cascade = {
steps: [
{
skill: 'intent-analyzer',
input: userRequest,
output: 'intent-brief'
},
{
skill: 'feature-dev-complete',
input: '${intent-brief}',
conditional: '${intent-brief.confidence} > 0.8'
}
]
};
With Agent Swarm
# Spawn intent analyzer as coordinator
npx claude-flow@alpha swarm-init --topology hierarchical
npx claude-flow@alpha agent-spawn --type analyst --role coordinator
# Agents report findings to analyzer for synthesis
npx claude-flow@alpha task-orchestrate \
--task "Analyze user intent from multiple perspectives" \
--coordinator "intent-analyzer"
Memory Schema
{
"intent-analyzer/": {
"session-${id}/": {
"raw-input": { /* Phase 1 */ },
"characteristics": { /* Phase 1 */ },
"context-clues": { /* Phase 1 */ },
"component-tree": { /* Phase 2 */ },
"interpretations": { /* Phase 3 */ },
"ranked-interpretations": { /* Phase 3 */ },
"questions": { /* Phase 4 */ },
"user-responses": { /* Phase 4 */ },
"refined-interpretations": { /* Phase 4 */ },
"final-synthesis": { /* Phase 5 */ },
"execution-brief": { /* Phase 5 */ }
}
}
}
Performance Optimization
Caching Common Patterns
// Cache frequently seen intent patterns
const intentCache = new Map();
async function checkCache(userInput) {
const embedding = await generateEmbedding(userInput);
const similar = findSimilar(embedding, intentCache);
if (similar && similar.similarity > 0.9) {
console.log('Using cached interpretation...');
return similar.interpretation;
}
return null;
}
Parallel Interpretation Generation
// Generate interpretations concurrently
const interpretationPromises = [
generateLiteralInterpretation(userInput),
generateInferredInterpretation(userInput, context),
generateExpertInterpretation(userInput, expertise),
generateNovelInterpretation(userInput) // Think outside the box
];
const interpretations = await Promise.all(interpretationPromises);
Skill Completion
Upon successful completion, this skill outputs:
- intent-analysis-result.json: Complete execution brief
- confidence-score.txt: Final confidence percentage
- clarification-log.md: Record of questions and answers
- next-steps.md: Recommended workflow to execute
The skill is complete when user confirmation is obtained and confidence > 0.8.
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/when-analyzing-user-intent-use-intent-analyzerCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
when-optimizing-prompts-use-prompt-architect
OtherThis skill provides a structured framework for developers to systematically analyze, refine, and optimize prompts for AI systems using evidence-based techniques. It helps eliminate anti-patterns and improve prompt structure, which is triggered by poor response quality or inconsistent outputs. The process includes A/B testing to validate effectiveness and produces an optimized prompt along with an analysis report.
when-optimizing-agent-learning-use-reasoningbank-intelligence
OtherThis skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.
when-creating-skill-template-use-skill-builder
OtherThis Claude Skill helps developers create new Claude Code Skills with proper YAML frontmatter and directory structure. It generates all required files including documentation and ensures skills follow best practices. Use this template generator when building reusable skills to maintain specification compliance and progressive disclosure.
when-creating-presentations-use-pptx-generation
OtherThis skill generates enterprise-grade PowerPoint presentations by enforcing structured workflows and design constraints. It produces accessible, professionally formatted decks with proper slide structure, notes, and WCAG compliance. Use it when you need automated generation of board decks, reports, or data-driven presentations.
