training-llms-megatron
About
This Claude Skill trains large language models (2B-462B parameters) using NVIDIA's Megatron-Core framework with advanced parallelism strategies. Use it when training models over 1B parameters, needing maximum GPU efficiency (47% MFU on H100), or requiring tensor/pipeline/sequence parallelism. It's a production-ready framework proven on models like Nemotron, LLaMA, and DeepSeek.
Documentation
Megatron-Core - Large-Scale LLM Training
Quick start
Megatron-Core trains LLMs from 2B to 462B parameters with up to 47% Model FLOP Utilization on H100 GPUs through advanced parallelism strategies.
Installation:
# Docker (recommended)
docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:25.04-py3
# Or pip
pip install megatron-core
Simple distributed training:
# Train with 2 GPUs using data parallelism
torchrun --nproc_per_node=2 examples/run_simple_mcore_train_loop.py
# Or LLaMA-3 8B training
./examples/llama/train_llama3_8b_fp8.sh
Common workflows
Workflow 1: Train LLaMA-style model with 3D parallelism
Copy this checklist:
LLaMA Training Setup:
- [ ] Step 1: Choose parallelism configuration
- [ ] Step 2: Configure training hyperparameters
- [ ] Step 3: Launch distributed training
- [ ] Step 4: Monitor performance metrics
Step 1: Choose parallelism configuration
Model size determines parallelism strategy:
| Model Size | GPUs | Tensor Parallel | Pipeline Parallel | Data Parallel | Context Parallel |
|---|---|---|---|---|---|
| 7B | 8 | 1 | 1 | 8 | 1 |
| 13B | 8 | 2 | 1 | 4 | 1 |
| 70B | 64 | 4 | 4 | 4 | 1 |
| 405B | 128 | 8 | 8 | 2 | 2 |
Step 2: Configure training hyperparameters
#!/bin/bash
# train_llama_70b.sh
GPUS_PER_NODE=8
NNODES=8 # 64 GPUs total
TP=4 # Tensor parallel
PP=4 # Pipeline parallel
CP=1 # Context parallel
# LLaMA 70B configuration
MODEL_SIZE=70 # Billion parameters
HIDDEN_SIZE=8192
NUM_LAYERS=80
NUM_HEADS=64
SEQ_LENGTH=4096
# Training hyperparameters
MICRO_BATCH=1
GLOBAL_BATCH=1024
LR=3e-4
torchrun \
--nproc_per_node=$GPUS_PER_NODE \
--nnodes=$NNODES \
pretrain_gpt.py \
--tensor-model-parallel-size $TP \
--pipeline-model-parallel-size $PP \
--context-parallel-size $CP \
--sequence-parallel \
--num-layers $NUM_LAYERS \
--hidden-size $HIDDEN_SIZE \
--num-attention-heads $NUM_HEADS \
--seq-length $SEQ_LENGTH \
--max-position-embeddings $SEQ_LENGTH \
--micro-batch-size $MICRO_BATCH \
--global-batch-size $GLOBAL_BATCH \
--lr $LR \
--train-iters 100000 \
--lr-decay-style cosine \
--lr-warmup-iters 2000 \
--weight-decay 0.1 \
--clip-grad 1.0 \
--bf16 \
--use-mcore-models \
--transformer-impl transformer_engine \
--data-path /path/to/data \
--vocab-file /path/to/vocab.json \
--merge-file /path/to/merges.txt
Step 3: Launch distributed training
# Single node (8 GPUs)
bash train_llama_70b.sh
# Multi-node with SLURM
sbatch --nodes=8 --gpus-per-node=8 train_llama_70b.sh
Step 4: Monitor performance metrics
Key metrics to track:
Model FLOP Utilization (MFU): Target >40% on H100
Throughput: Tokens/sec/GPU
Memory usage: <80GB per GPU for 70B model
Loss: Should decrease steadily
Workflow 2: Configure Mixture of Experts (MoE) training
For sparse MoE models like Mixtral.
MoE Training:
- [ ] Step 1: Configure expert parallelism
- [ ] Step 2: Set MoE hyperparameters
- [ ] Step 3: Launch training with EP
Step 1: Configure expert parallelism
# Mixtral 8x7B example
TENSOR_PARALLEL=2
PIPELINE_PARALLEL=1
EXPERT_PARALLEL=4 # Split 8 experts across 4 GPUs
DATA_PARALLEL=4
TOTAL_GPUS=$((TENSOR_PARALLEL * PIPELINE_PARALLEL * EXPERT_PARALLEL * DATA_PARALLEL))
# = 2 * 1 * 4 * 4 = 32 GPUs
Step 2: Set MoE hyperparameters
torchrun \
--nproc_per_node=8 \
pretrain_gpt.py \
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 1 \
--expert-model-parallel-size 4 \
--num-experts 8 \
--moe-router-topk 2 \
--moe-router-load-balancing-type aux_loss \
--moe-aux-loss-coeff 0.01 \
--hidden-size 4096 \
--num-layers 32 \
--num-attention-heads 32 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--bf16 \
--use-mcore-models \
--transformer-impl transformer_engine \
--data-path /path/to/data \
--vocab-file /path/to/vocab.json \
--merge-file /path/to/merges.txt
Step 3: Launch training with EP
Expert parallelism distributes different experts across GPUs, reducing memory while maintaining capacity.
Memory without EP: 8 experts × 7B = 56GB per GPU
Memory with EP=4: 2 experts × 7B = 14GB per GPU
Savings: 75% memory reduction
Workflow 3: Optimize for maximum throughput
Achieve 47% MFU on H100.
Performance Optimization:
- [ ] Step 1: Enable Flash Attention
- [ ] Step 2: Use FP8 precision (H100)
- [ ] Step 3: Optimize micro-batch size
- [ ] Step 4: Tune parallelism degrees
Step 1: Enable optimizations
--use-mcore-models # Use Megatron Core models
--transformer-impl transformer_engine # Use Transformer Engine
--sequence-parallel # Reduce activation memory (use with TP)
Step 2: Use FP8 precision (H100 only)
--fp8-hybrid # FP8 mixed precision training
# Transformer Engine handles FP8 automatically
Result: 1.5-2x speedup on H100 vs BF16.
Step 3: Optimize micro-batch size
Find largest micro-batch that fits in memory:
# Start with 1, increase until OOM
for MBS in 1 2 4 8; do
echo "Testing micro-batch-size=$MBS"
torchrun ... --micro-batch-size $MBS
done
Typical values:
- 7B model: 4-8
- 70B model: 1-2
- 405B model: 1
Step 4: Tune parallelism degrees
Rules of thumb:
Tensor Parallel: Use ≤8 (limited by NVLink within node)
Pipeline Parallel: Use for >70B models
Context Parallel: Use for sequences >8K tokens
Data Parallel: Fill remaining GPUs
Example 405B on 128 H100s:
TP=8 (1 node)
PP=8 (across nodes)
CP=2 (long sequences)
DP=1
Total = 8 × 8 × 2 × 1 = 128 GPUs
When to use vs alternatives
Use Megatron-Core when:
- Training models >10B parameters
- Need maximum efficiency (target >40% MFU)
- Using NVIDIA GPUs (A100, H100)
- Production training at scale
- Want fine-grained parallelism control
Use alternatives instead:
- PyTorch FSDP: Models <70B, simpler API, PyTorch native
- DeepSpeed: Easier setup, good for <100B models
- HuggingFace Accelerate: Prototyping, simpler workflows
- LitGPT: Educational, single-file implementations
Common issues
Issue: Low GPU utilization (<30% MFU)
Causes:
- Micro-batch too small
- Too much parallelism overhead
- Not using Flash Attention
Fixes:
# Increase micro-batch
--micro-batch-size 4 # Was 1
# Enable optimizations
--use-flash-attn
--sequence-parallel
# Reduce TP if >8
--tensor-model-parallel-size 4 # Was 16
Issue: Out of memory
Reduce memory with:
--tensor-model-parallel-size 2 # Split model across GPUs
--recompute-granularity full # Gradient checkpointing
--recompute-method block # Checkpoint transformer blocks
--recompute-num-layers 1 # Checkpoint every layer
Or use CPU/NVMe offloading:
--cpu-optimizer # Offload optimizer to CPU
--cpu-optimizer-type ADAM # CPU Adam variant
Issue: Training slower than expected
Check:
- Network bottleneck: Ensure InfiniBand/NVLink enabled
- Pipeline bubbles: Use interleaved pipeline schedule
--num-layers-per-virtual-pipeline-stage 2 - Data loading: Use fast data loader
--dataloader-type cyclic
Issue: Diverging loss
Stabilize training:
--lr-warmup-iters 2000 # Longer warmup
--clip-grad 1.0 # Gradient clipping
--init-method-std 0.006 # Smaller init
--attention-dropout 0.0 # No dropout in attention
--hidden-dropout 0.0 # No dropout in FFN
Advanced topics
Parallelism strategies: See references/parallelism-guide.md for detailed comparison of TP/PP/DP/CP/EP with performance analysis and when to use each.
Performance benchmarks: See references/benchmarks.md for MFU numbers across different model sizes and GPU configurations.
Production configurations: See references/production-examples.md for real-world setups from LLaMA 3 405B, Nemotron-4 340B, and DeepSeek-V3 671B.
Training recipes: See references/training-recipes.md for complete hyperparameter configurations for GPT/LLaMA/Mixtral architectures.
Hardware requirements
- GPU: NVIDIA Ampere+ (A100, H100, B200)
- Turing works but slower
- FP8 requires Hopper/Ada/Blackwell
- Network: InfiniBand or 400Gb+ Ethernet for multi-node
- Memory per GPU:
- 7B model: 40GB+
- 70B model: 80GB (with TP=4)
- 405B model: 80GB (with TP=8, PP=8)
- Storage: Fast NVMe for checkpoints (1TB+ for 70B+ models)
Resources
- Docs: https://docs.nvidia.com/megatron-core/
- GitHub: https://github.com/NVIDIA/Megatron-LM
- Papers:
- "Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism" (2019)
- "Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM" (2021)
- NeMo Framework: https://docs.nvidia.com/nemo-framework/ (built on Megatron-Core)
Quick Install
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/megatron-coreCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
