Back to Skills

bio-workflows-crispr-screen-pipeline

majiayu000
Updated Today
58
9
58
View on GitHub
Designautomationdesigndata

About

This skill provides an end-to-end pipeline for analyzing pooled CRISPR screens, processing data from FASTQ files through to hit gene identification. It orchestrates guide counting, quality control, and statistical analysis using MAGeCK, and supports multiple hit-calling methods. Use it when you need a complete, automated workflow for CRISPR screen analysis from raw sequencing data to results.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/bio-workflows-crispr-screen-pipeline

Copy and paste this command in Claude Code to install this skill

Documentation

CRISPR Screen Pipeline

Pipeline Overview

FASTQ Files ──> Guide Counting ──> Count Matrix
                                        │
                                        ▼
              ┌─────────────────────────────────────────────┐
              │         crispr-screen-pipeline              │
              ├─────────────────────────────────────────────┤
              │  1. Guide Counting (MAGeCK count)           │
              │  2. QC: Library coverage, gini index        │
              │  3. Gene-level Analysis (MAGeCK RRA/MLE)    │
              │  4. Hit Calling (FDR, effect size)          │
              │  5. Visualization & Reporting               │
              └─────────────────────────────────────────────┘
                                        │
                                        ▼
                    Hit Genes + Volcano/Rank Plots

Complete Workflow

Step 1: Guide Counting

# From FASTQ files
mageck count \
    -l library.csv \
    -n experiment \
    --sample-label Day0,Day14_Rep1,Day14_Rep2,Day14_Rep3 \
    --fastq Day0.fastq.gz Day14_Rep1.fastq.gz Day14_Rep2.fastq.gz Day14_Rep3.fastq.gz \
    --trim-5 0 \
    --pdf-report

Step 2: Quality Control

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

counts = pd.read_csv('experiment.count.txt', sep='\t', index_col=0)
counts_numeric = counts.iloc[:, 1:]

qc_stats = {}
for col in counts_numeric.columns:
    total = counts_numeric[col].sum()
    zeros = (counts_numeric[col] == 0).sum()
    gini = calculate_gini(counts_numeric[col].values)
    qc_stats[col] = {'total_reads': total, 'zero_count_guides': zeros, 'gini': gini}

qc_df = pd.DataFrame(qc_stats).T
print('QC Summary:')
print(qc_df)

# Gini index function
def calculate_gini(x):
    x = np.sort(x[x > 0])
    n = len(x)
    cumsum = np.cumsum(x)
    return (2 * np.sum((np.arange(1, n+1) * x)) - (n + 1) * cumsum[-1]) / (n * cumsum[-1])

# QC thresholds
assert qc_df['zero_count_guides'].max() < len(counts) * 0.2, 'Too many zero-count guides'
assert qc_df['gini'].max() < 0.4, 'Gini index too high (uneven distribution)'
print('QC passed!')

Step 3: MAGeCK RRA Analysis (Negative Selection)

# For dropout/negative selection screens
mageck test \
    -k experiment.count.txt \
    -t Day14_Rep1,Day14_Rep2,Day14_Rep3 \
    -c Day0 \
    -n negative_screen \
    --pdf-report \
    --gene-lfc-method alphamedian

Step 4: MAGeCK MLE (Complex Designs)

# For screens with multiple conditions
# Design matrix: design.txt
# samplename,baseline,treatment
# Day0,1,0
# Day14_Ctrl,1,0
# Day14_Drug,1,1

mageck mle \
    -k experiment.count.txt \
    -d design.txt \
    -n mle_analysis \
    --threads 8

Step 5: Hit Calling

import pandas as pd

# Load MAGeCK results
gene_summary = pd.read_csv('negative_screen.gene_summary.txt', sep='\t')

# Define hits
gene_summary['neg_hit'] = (gene_summary['neg|fdr'] < 0.05) & (gene_summary['neg|lfc'] < -0.5)
gene_summary['pos_hit'] = (gene_summary['pos|fdr'] < 0.05) & (gene_summary['pos|lfc'] > 0.5)

neg_hits = gene_summary[gene_summary['neg_hit']].sort_values('neg|rank')
pos_hits = gene_summary[gene_summary['pos_hit']].sort_values('pos|rank')

print(f'Negative selection hits (dropout): {len(neg_hits)}')
print(f'Positive selection hits (enriched): {len(pos_hits)}')

# Save hit lists
neg_hits.to_csv('negative_hits.csv', index=False)
pos_hits.to_csv('positive_hits.csv', index=False)

Step 6: Visualization

import matplotlib.pyplot as plt
import numpy as np

# Volcano plot
fig, ax = plt.subplots(figsize=(10, 8))
x = gene_summary['neg|lfc']
y = -np.log10(gene_summary['neg|fdr'] + 1e-10)

colors = ['red' if h else 'blue' if p else 'gray'
          for h, p in zip(gene_summary['neg_hit'], gene_summary['pos_hit'])]
ax.scatter(x, y, c=colors, alpha=0.5, s=20)

ax.axhline(-np.log10(0.05), linestyle='--', color='black', alpha=0.5)
ax.axvline(-0.5, linestyle='--', color='black', alpha=0.5)
ax.axvline(0.5, linestyle='--', color='black', alpha=0.5)

ax.set_xlabel('Log2 Fold Change')
ax.set_ylabel('-Log10(FDR)')
ax.set_title('CRISPR Screen Volcano Plot')
plt.tight_layout()
plt.savefig('volcano_plot.png', dpi=150)

Complete R Workflow

library(MAGeCKFlute)
library(ggplot2)

# Load MAGeCK results
gene_summary <- read.delim('negative_screen.gene_summary.txt')
sgrna_summary <- read.delim('negative_screen.sgrna_summary.txt')

# QC with MAGeCKFlute
FluteMLE(mle_output = 'mle_analysis.gene_summary.txt',
         treatname = 'treatment',
         proj = 'crispr_screen',
         pathview.top = 10)

# Or for RRA results
FluteRRA(gene_summary = gene_summary,
         sgrna_summary = sgrna_summary,
         proj = 'rra_analysis')

# Custom rank plot
gene_summary$rank <- rank(gene_summary$`neg.score`)
gene_summary$is_hit <- gene_summary$`neg.fdr` < 0.05

ggplot(gene_summary, aes(x = rank, y = -log10(`neg.fdr` + 1e-10), color = is_hit)) +
    geom_point(alpha = 0.5) +
    geom_hline(yintercept = -log10(0.05), linetype = 'dashed') +
    scale_color_manual(values = c('gray', 'red')) +
    theme_bw() +
    labs(title = 'Gene Rank Plot', x = 'Rank', y = '-Log10(FDR)')
ggsave('rank_plot.png', width = 10, height = 6)

BAGEL2 Alternative (Essential Genes)

# Calculate Bayes Factor for essentiality
BAGEL.py bf \
    -i experiment.count.txt \
    -o bagel_output \
    -e CEGv2.txt \
    -n NEGv1.txt \
    -c Day0 \
    -s Day14_Rep1,Day14_Rep2,Day14_Rep3

# Precision-recall analysis
BAGEL.py pr \
    -i bagel_output.bf \
    -o bagel_pr \
    -e CEGv2.txt \
    -n NEGv1.txt

QC Checkpoints

StageCheckAction if Failed
Counting>70% mapping rateCheck library/trimming
Zero guides<20%Check sequencing depth
Gini index<0.4Check for amplification bias
Replicatesr > 0.8Check experimental consistency
ControlsSeparate in PCACheck screen worked

Workflow Variants

Positive Selection Screen

# For enrichment screens (e.g., drug resistance)
mageck test \
    -k counts.txt \
    -t Resistant_Rep1,Resistant_Rep2 \
    -c Sensitive \
    -n positive_screen \
    --gene-lfc-method alphamedian

CRISPRi/CRISPRa

# Same workflow, different interpretation
# CRISPRi: negative LFC = gene promotes phenotype
# CRISPRa: positive LFC = gene promotes phenotype
mageck test -k counts.txt -t Treated -c Control -n crispri_screen

Related Skills

  • crispr-screens/screen-qc - Detailed QC metrics
  • crispr-screens/mageck-analysis - MAGeCK parameters
  • crispr-screens/hit-calling - Hit calling methods
  • crispr-screens/crispresso-editing - Individual editing analysis
  • crispr-screens/library-design - sgRNA selection and library design
  • crispr-screens/batch-correction - Multi-batch normalization
  • pathway-analysis/enrichment-analysis - Pathway enrichment of hits

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/crispr-screen-pipeline

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill