tensorrt-llm
About
TensorRT-LLM is an NVIDIA library that optimizes LLM inference for maximum throughput and lowest latency on NVIDIA GPUs. It is ideal for production deployments requiring 10-100x faster performance than PyTorch, supporting features like quantization and multi-GPU scaling. Use it when you need top performance on NVIDIA hardware, opting for alternatives like vLLM for simpler setups or llama.cpp for CPU/Apple Silicon.
Documentation
TensorRT-LLM
NVIDIA's open-source library for optimizing LLM inference with state-of-the-art performance on NVIDIA GPUs.
When to use TensorRT-LLM
Use TensorRT-LLM when:
- Deploying on NVIDIA GPUs (A100, H100, GB200)
- Need maximum throughput (24,000+ tokens/sec on Llama 3)
- Require low latency for real-time applications
- Working with quantized models (FP8, INT4, FP4)
- Scaling across multiple GPUs or nodes
Use vLLM instead when:
- Need simpler setup and Python-first API
- Want PagedAttention without TensorRT compilation
- Working with AMD GPUs or non-NVIDIA hardware
Use llama.cpp instead when:
- Deploying on CPU or Apple Silicon
- Need edge deployment without NVIDIA GPUs
- Want simpler GGUF quantization format
Quick start
Installation
# Docker (recommended)
docker pull nvidia/tensorrt_llm:latest
# pip install
pip install tensorrt_llm==1.2.0rc3
# Requires CUDA 13.0.0, TensorRT 10.13.2, Python 3.10-3.12
Basic inference
from tensorrt_llm import LLM, SamplingParams
# Initialize model
llm = LLM(model="meta-llama/Meta-Llama-3-8B")
# Configure sampling
sampling_params = SamplingParams(
max_tokens=100,
temperature=0.7,
top_p=0.9
)
# Generate
prompts = ["Explain quantum computing"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.text)
Serving with trtllm-serve
# Start server (automatic model download and compilation)
trtllm-serve meta-llama/Meta-Llama-3-8B \
--tp_size 4 \ # Tensor parallelism (4 GPUs)
--max_batch_size 256 \
--max_num_tokens 4096
# Client request
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3-8B",
"messages": [{"role": "user", "content": "Hello!"}],
"temperature": 0.7,
"max_tokens": 100
}'
Key features
Performance optimizations
- In-flight batching: Dynamic batching during generation
- Paged KV cache: Efficient memory management
- Flash Attention: Optimized attention kernels
- Quantization: FP8, INT4, FP4 for 2-4× faster inference
- CUDA graphs: Reduced kernel launch overhead
Parallelism
- Tensor parallelism (TP): Split model across GPUs
- Pipeline parallelism (PP): Layer-wise distribution
- Expert parallelism: For Mixture-of-Experts models
- Multi-node: Scale beyond single machine
Advanced features
- Speculative decoding: Faster generation with draft models
- LoRA serving: Efficient multi-adapter deployment
- Disaggregated serving: Separate prefill and generation
Common patterns
Quantized model (FP8)
from tensorrt_llm import LLM
# Load FP8 quantized model (2× faster, 50% memory)
llm = LLM(
model="meta-llama/Meta-Llama-3-70B",
dtype="fp8",
max_num_tokens=8192
)
# Inference same as before
outputs = llm.generate(["Summarize this article..."])
Multi-GPU deployment
# Tensor parallelism across 8 GPUs
llm = LLM(
model="meta-llama/Meta-Llama-3-405B",
tensor_parallel_size=8,
dtype="fp8"
)
Batch inference
# Process 100 prompts efficiently
prompts = [f"Question {i}: ..." for i in range(100)]
outputs = llm.generate(
prompts,
sampling_params=SamplingParams(max_tokens=200)
)
# Automatic in-flight batching for maximum throughput
Performance benchmarks
Meta Llama 3-8B (H100 GPU):
- Throughput: 24,000 tokens/sec
- Latency: ~10ms per token
- vs PyTorch: 100× faster
Llama 3-70B (8× A100 80GB):
- FP8 quantization: 2× faster than FP16
- Memory: 50% reduction with FP8
Supported models
- LLaMA family: Llama 2, Llama 3, CodeLlama
- GPT family: GPT-2, GPT-J, GPT-NeoX
- Qwen: Qwen, Qwen2, QwQ
- DeepSeek: DeepSeek-V2, DeepSeek-V3
- Mixtral: Mixtral-8x7B, Mixtral-8x22B
- Vision: LLaVA, Phi-3-vision
- 100+ models on HuggingFace
References
- Optimization Guide - Quantization, batching, KV cache tuning
- Multi-GPU Setup - Tensor/pipeline parallelism, multi-node
- Serving Guide - Production deployment, monitoring, autoscaling
Resources
Quick Install
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/tensorrt-llmCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
