Back to Skills

implementation

matteocervelli
Updated Today
27 views
10
10
View on GitHub
Metawordtestingdesign

About

This Claude Skill implements features by generating code, tests, and documentation, following approved designs. It is used after the design phase to build features while adhering to TDD and project coding standards. The skill utilizes tools like Read, Write, Edit, and Bash to systematically develop high-quality software.

Documentation

Feature Implementation Skill

Purpose

This skill provides systematic guidance for implementing features with high-quality code, comprehensive tests, and proper documentation, following project standards and best practices.

When to Use

  • After design phase is complete and approved
  • Need to implement code for a feature
  • Writing unit and integration tests
  • Creating technical documentation
  • Following TDD (Test-Driven Development) workflow

Implementation Workflow

1. Setup and Preparation

Review Design Document:

  • Read architecture design from previous phase
  • Understand component structure
  • Review API contracts and data models
  • Note security and performance requirements

Setup Development Environment:

# Activate virtual environment
source venv/bin/activate  # or: uv venv && source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt
# or: uv pip install -r requirements.txt

# Install dev dependencies
pip install -e ".[dev]"

Create Feature Branch:

git checkout -b feature/feature-name

Deliverable: Development environment ready


2. Test-Driven Development (TDD)

TDD Cycle: Red → Green → Refactor

Step 1: Write Failing Test (Red)

# tests/test_feature.py
import pytest
from feature import process_data

def test_process_data_success():
    """Test successful data processing."""
    # Arrange
    input_data = {"name": "test", "value": 123}

    # Act
    result = process_data(input_data)

    # Assert
    assert result.name == "test"
    assert result.value == 123

Step 2: Write Minimal Code (Green)

# src/tools/feature/core.py
def process_data(input_data: dict):
    """Process input data."""
    # Minimal implementation to pass test
    return type('Result', (), input_data)()

Step 3: Refactor (Refactor)

# src/tools/feature/core.py
from .models import InputModel, ResultModel

def process_data(input_data: dict) -> ResultModel:
    """
    Process input data and return result.

    Args:
        input_data: Input data dictionary

    Returns:
        ResultModel with processed data

    Raises:
        ValidationError: If input is invalid
    """
    # Proper implementation with validation
    validated = InputModel(**input_data)
    return ResultModel(
        name=validated.name,
        value=validated.value
    )

Repeat: Write next test, implement, refactor

Deliverable: Tested, working code


3. Code Implementation

Follow Project Structure:

src/tools/feature_name/
├── __init__.py           # Public exports
├── models.py             # Pydantic models (data)
├── interfaces.py         # Abstract interfaces
├── core.py               # Core business logic
├── repository.py         # Data access layer
├── validators.py         # Input validation
├── utils.py              # Helper functions
├── config.py             # Configuration
├── exceptions.py         # Custom exceptions
└── main.py               # CLI entry point (if applicable)

Coding Standards: Refer to code-style-guide.md for:

  • PEP 8 style guide
  • Type hints for all functions
  • Google-style docstrings
  • 500-line file limit
  • Single responsibility principle

Example Implementation:

# src/tools/feature/models.py
from pydantic import BaseModel, Field
from typing import Optional
from datetime import datetime

class FeatureInput(BaseModel):
    """Input model for feature."""

    name: str = Field(..., min_length=1, max_length=100)
    value: int = Field(..., ge=0)

    class Config:
        validate_assignment = True


class FeatureOutput(BaseModel):
    """Output model for feature."""

    id: Optional[int] = None
    name: str
    value: int
    created_at: datetime = Field(default_factory=datetime.utcnow)


# src/tools/feature/core.py
from .models import FeatureInput, FeatureOutput
from .repository import FeatureRepository
from .validators import FeatureValidator

class FeatureService:
    """Feature service with business logic."""

    def __init__(
        self,
        repository: FeatureRepository,
        validator: FeatureValidator
    ):
        """
        Initialize service with dependencies.

        Args:
            repository: Repository for data access
            validator: Validator for input validation
        """
        self.repository = repository
        self.validator = validator

    def create(self, input_data: FeatureInput) -> FeatureOutput:
        """
        Create new feature resource.

        Args:
            input_data: Validated input data

        Returns:
            FeatureOutput with created resource

        Raises:
            ValidationError: If validation fails
            RepositoryError: If save fails
        """
        # Validate
        self.validator.validate_create(input_data)

        # Create
        output = FeatureOutput(
            name=input_data.name,
            value=input_data.value
        )

        # Persist
        saved = self.repository.save(output)

        return saved

Deliverable: Implemented core functionality


4. Testing Implementation

Testing Checklist: Refer to testing-checklist.md for comprehensive coverage

Unit Tests (80%+ Coverage):

# tests/test_core.py
import pytest
from unittest.mock import Mock, MagicMock
from feature.core import FeatureService
from feature.models import FeatureInput, FeatureOutput

@pytest.fixture
def mock_repository():
    """Mock repository for testing."""
    repo = Mock()
    repo.save.return_value = FeatureOutput(
        id=1,
        name="test",
        value=123
    )
    return repo

@pytest.fixture
def mock_validator():
    """Mock validator for testing."""
    validator = Mock()
    validator.validate_create.return_value = None
    return validator

@pytest.fixture
def service(mock_repository, mock_validator):
    """Service fixture with mocked dependencies."""
    return FeatureService(
        repository=mock_repository,
        validator=mock_validator
    )

def test_create_success(service, mock_repository):
    """Test successful creation."""
    # Arrange
    input_data = FeatureInput(name="test", value=123)

    # Act
    result = service.create(input_data)

    # Assert
    assert result.name == "test"
    assert result.value == 123
    mock_repository.save.assert_called_once()

def test_create_validation_error(service, mock_validator):
    """Test validation error handling."""
    # Arrange
    input_data = FeatureInput(name="test", value=123)
    mock_validator.validate_create.side_effect = ValidationError("Invalid")

    # Act & Assert
    with pytest.raises(ValidationError):
        service.create(input_data)

Integration Tests:

# tests/integration/test_feature_integration.py
import pytest
from pathlib import Path
from feature import FeatureService, FileSystemRepository

@pytest.fixture
def temp_data_dir(tmp_path):
    """Temporary directory for test data."""
    return tmp_path / "data"

def test_create_and_retrieve(temp_data_dir):
    """Test end-to-end create and retrieve."""
    # Arrange
    repo = FileSystemRepository(temp_data_dir)
    service = FeatureService(repo)

    # Act: Create
    created = service.create(FeatureInput(name="test", value=123))

    # Act: Retrieve
    retrieved = service.get(created.id)

    # Assert
    assert retrieved.name == "test"
    assert retrieved.value == 123

Run Tests:

# Run all tests with coverage
pytest --cov=src --cov-report=html --cov-report=term

# Run specific test file
pytest tests/test_core.py -v

# Run with markers
pytest -m "not slow" -v

Deliverable: Comprehensive test suite (80%+ coverage)


5. Code Quality Checks

Run Formatters and Linters:

# Format code with Black
black src/ tests/

# Type check with mypy
mypy src/

# Lint with flake8 (if configured)
flake8 src/ tests/

# Run all checks
make lint  # If Makefile configured

Pre-commit Hooks (If Configured):

# Run pre-commit checks
pre-commit run --all-files

Code Review Checklist:

  • All functions have type hints
  • All functions have docstrings
  • No files exceed 500 lines
  • Tests achieve 80%+ coverage
  • No lint errors or warnings
  • Error handling implemented
  • Logging added where appropriate
  • Security best practices followed

Deliverable: Quality-checked code


6. Documentation

Code Documentation:

  • Docstrings for all public functions/classes
  • Inline comments for complex logic
  • Type hints for clarity

Technical Documentation:

# Feature Implementation

## Overview
[What was implemented]

## Architecture
[Actual structure (may differ from design)]

## Usage Examples
```python
from feature import FeatureService

service = FeatureService()
result = service.create(name="example")

Configuration

Required environment variables:

  • FEATURE_API_KEY: API key for service
  • FEATURE_TIMEOUT: Timeout in seconds (default: 30)

Testing

pytest tests/test_feature.py

Known Issues

Future Enhancements

  • [Enhancement 1]

**User Documentation (If Applicable):**
- Usage guide in `docs/guides/`
- CLI help text
- Example configurations

**Deliverable:** Complete documentation

---

### 7. Integration and Verification

**Verify Against Requirements:**
- [ ] All acceptance criteria met
- [ ] Security checklist items addressed
- [ ] Performance requirements met
- [ ] Edge cases handled
- [ ] Error scenarios tested

**Manual Testing:**
```bash
# Test CLI (if applicable)
python -m src.tools.feature.main create --name test

# Test with real data
python -m src.tools.feature.main --input sample.json

# Test error cases
python -m src.tools.feature.main --invalid-input

Integration with Existing Code:

  • Imports work correctly
  • No circular dependencies
  • Backward compatibility maintained (if applicable)
  • No breaking changes to public APIs

Deliverable: Verified, working feature


Code Style Guidelines

Python Style (PEP 8)

Imports:

# Standard library
import os
import sys
from pathlib import Path

# Third-party
import click
from pydantic import BaseModel

# Local
from .models import FeatureModel
from .exceptions import FeatureError

Naming:

# Classes: PascalCase
class FeatureService:
    pass

# Functions/methods: snake_case
def process_data():
    pass

# Constants: UPPER_SNAKE_CASE
MAX_RETRIES = 3

# Private: leading underscore
def _internal_helper():
    pass

Type Hints:

from typing import Optional, List, Dict, Union

def function(
    required: str,
    optional: Optional[int] = None,
    items: List[str] = None
) -> Dict[str, Any]:
    pass

Docstrings (Google Style):

def function(param1: str, param2: int) -> bool:
    """
    Short description.

    Longer description if needed.

    Args:
        param1: Description of param1
        param2: Description of param2

    Returns:
        Description of return value

    Raises:
        ValueError: When this happens
    """
    pass

Testing Best Practices

Pytest Conventions

Test File Naming:

  • test_*.py or *_test.py
  • Mirror source structure: src/core.pytests/test_core.py

Test Function Naming:

def test_function_name_condition_expected_result():
    """Test description."""
    pass

# Examples:
def test_create_feature_valid_input_returns_feature():
    pass

def test_validate_input_missing_name_raises_error():
    pass

Test Structure (Arrange-Act-Assert):

def test_example():
    """Test example."""
    # Arrange: Setup test data and mocks
    input_data = {"name": "test"}
    mock_service = Mock()

    # Act: Execute the code being tested
    result = function_under_test(input_data, mock_service)

    # Assert: Verify expected outcomes
    assert result == expected
    mock_service.method.assert_called_once()

Fixtures:

# tests/conftest.py (shared fixtures)
import pytest

@pytest.fixture
def sample_data():
    """Sample data for tests."""
    return {"name": "test", "value": 123}

@pytest.fixture
def temp_directory(tmp_path):
    """Temporary directory for test files."""
    test_dir = tmp_path / "test_data"
    test_dir.mkdir()
    yield test_dir
    # Cleanup happens automatically

Parametrize for Multiple Cases:

@pytest.mark.parametrize("input_value,expected", [
    ("valid", True),
    ("invalid", False),
    ("", False),
])
def test_validation(input_value, expected):
    """Test validation with multiple inputs."""
    result = validate(input_value)
    assert result == expected

Common Patterns

Error Handling Pattern

from typing import Optional
import logging

logger = logging.getLogger(__name__)

def process_data(data: dict) -> Result:
    """Process data with proper error handling."""
    try:
        # Validate
        validated = validate_data(data)

        # Process
        result = perform_processing(validated)

        return result

    except ValidationError as e:
        logger.warning(f"Validation failed: {e}")
        raise

    except ProcessingError as e:
        logger.error(f"Processing failed: {e}", exc_info=True)
        raise

    except Exception as e:
        logger.exception(f"Unexpected error: {e}")
        raise ProcessingError("Unexpected error occurred") from e

Dependency Injection Pattern

from abc import ABC, abstractmethod

# Interface
class Repository(ABC):
    @abstractmethod
    def save(self, data) -> None:
        pass

# Implementation
class FileRepository(Repository):
    def save(self, data) -> None:
        # File-based implementation
        pass

# Service with dependency injection
class Service:
    def __init__(self, repository: Repository):
        self.repository = repository  # Injected dependency

    def create(self, data):
        # Use injected repository
        self.repository.save(data)

# Usage
repo = FileRepository()
service = Service(repository=repo)  # Inject dependency

Configuration Pattern

from pydantic_settings import BaseSettings

class Config(BaseSettings):
    """Application configuration."""

    api_key: str
    timeout: int = 30
    debug: bool = False

    class Config:
        env_prefix = "FEATURE_"
        env_file = ".env"

# Usage
config = Config()  # Loads from environment/file
service = Service(api_key=config.api_key, timeout=config.timeout)

Supporting Resources

  • code-style-guide.md: Detailed Python style guidelines
  • testing-checklist.md: Comprehensive testing requirements
  • scripts/generate_tests.py: Test scaffolding automation

Integration with Feature Implementation Flow

Input: Approved architecture design Process: TDD implementation with quality checks Output: Tested, documented code Next Step: Validation skill for quality assurance


Implementation Checklist

Before marking feature complete:

  • All code implemented per design
  • Unit tests written (80%+ coverage)
  • Integration tests written
  • All tests passing
  • Code formatted (Black)
  • Type checking passing (mypy)
  • No lint errors
  • Docstrings complete
  • Technical documentation written
  • User documentation written (if applicable)
  • Manual testing completed
  • Security considerations addressed
  • Performance requirements met
  • Code reviewed (if applicable)
  • Ready for validation phase

Quick Install

/plugin add https://github.com/matteocervelli/llms/tree/main/implementation

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

matteocervelli/llms
Path: .claude/skills/implementation

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill

business-rule-documentation

Meta

This skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.

View skill