Back to Skills

construction-expert

majiayu000
Updated Yesterday
58
9
58
View on GitHub
Otherconstructionbimproject-managementsafetybuilding

About

This Claude Skill provides expert guidance on construction management, BIM, safety compliance, and construction technology. Developers should use it when building tools for project planning, cost estimation, regulatory compliance, or implementing construction tech like IoT sensors and drones. It covers core concepts from scheduling to modern solutions like AR visualization and construction robotics.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/construction-expert

Copy and paste this command in Claude Code to install this skill

Documentation

Construction Expert

Expert guidance for construction management, project planning, Building Information Modeling (BIM), safety compliance, and modern construction technology solutions.

Core Concepts

Construction Management

  • Project planning and scheduling
  • Cost estimation and control
  • Resource management
  • Quality assurance
  • Contract management
  • Risk management
  • Change order management

Technologies

  • Building Information Modeling (BIM)
  • Construction management software
  • Drone surveying and inspection
  • 3D printing and modular construction
  • IoT sensors for monitoring
  • Augmented reality for visualization
  • Construction robotics

Standards and Regulations

  • OSHA safety regulations
  • Building codes (IBC, IRC)
  • AIA contracts and standards
  • LEED certification
  • ISO 19650 (BIM standards)
  • CSI MasterFormat
  • Environmental regulations

Project Management System

from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import List, Optional, Dict
from decimal import Decimal
from enum import Enum

class ProjectPhase(Enum):
    PRE_CONSTRUCTION = "pre_construction"
    SITE_PREPARATION = "site_preparation"
    FOUNDATION = "foundation"
    FRAMING = "framing"
    MEP = "mep"  # Mechanical, Electrical, Plumbing
    INTERIOR = "interior"
    EXTERIOR = "exterior"
    FINAL = "final"
    CLOSEOUT = "closeout"

class TaskStatus(Enum):
    NOT_STARTED = "not_started"
    IN_PROGRESS = "in_progress"
    COMPLETED = "completed"
    DELAYED = "delayed"
    ON_HOLD = "on_hold"

@dataclass
class ConstructionProject:
    """Construction project information"""
    project_id: str
    project_name: str
    location: dict
    project_type: str  # 'residential', 'commercial', 'industrial'
    owner: str
    general_contractor: str
    start_date: datetime
    planned_end_date: datetime
    actual_end_date: Optional[datetime]
    budget: Decimal
    current_cost: Decimal
    square_footage: float
    current_phase: ProjectPhase

@dataclass
class Task:
    """Construction task/activity"""
    task_id: str
    project_id: str
    name: str
    description: str
    phase: ProjectPhase
    status: TaskStatus
    assigned_to: str  # Subcontractor or crew
    planned_start: datetime
    planned_end: datetime
    actual_start: Optional[datetime]
    actual_end: Optional[datetime]
    budget: Decimal
    actual_cost: Decimal
    predecessors: List[str]  # Task IDs that must complete first
    progress_percent: float

class ConstructionManagementSystem:
    """Construction project management system"""

    def __init__(self):
        self.projects = {}
        self.tasks = {}
        self.change_orders = []
        self.inspections = []

    def create_project_schedule(self, project_id: str, tasks_data: List[dict]) -> dict:
        """Create project schedule using Critical Path Method"""
        project = self.projects.get(project_id)
        if not project:
            return {'error': 'Project not found'}

        # Create tasks
        tasks = []
        for task_data in tasks_data:
            task = Task(
                task_id=self._generate_task_id(),
                project_id=project_id,
                name=task_data['name'],
                description=task_data.get('description', ''),
                phase=ProjectPhase(task_data['phase']),
                status=TaskStatus.NOT_STARTED,
                assigned_to=task_data['assigned_to'],
                planned_start=task_data['planned_start'],
                planned_end=task_data['planned_end'],
                actual_start=None,
                actual_end=None,
                budget=Decimal(str(task_data['budget'])),
                actual_cost=Decimal('0'),
                predecessors=task_data.get('predecessors', []),
                progress_percent=0.0
            )
            tasks.append(task)
            self.tasks[task.task_id] = task

        # Calculate critical path
        critical_path = self._calculate_critical_path(tasks)

        # Calculate project duration
        if tasks:
            project_end = max(t.planned_end for t in tasks)
            project_duration = (project_end - project.start_date).days
        else:
            project_duration = 0

        return {
            'project_id': project_id,
            'total_tasks': len(tasks),
            'project_duration_days': project_duration,
            'critical_path': [t.task_id for t in critical_path],
            'critical_path_duration': sum(
                (t.planned_end - t.planned_start).days for t in critical_path
            )
        }

    def _calculate_critical_path(self, tasks: List[Task]) -> List[Task]:
        """Calculate critical path through project network"""
        # Simplified critical path calculation
        # In production, would use proper CPM algorithm

        # Find tasks with no predecessors
        start_tasks = [t for t in tasks if not t.predecessors]

        # Find longest path through network
        critical_path = []
        current_tasks = start_tasks

        while current_tasks:
            # Find task with longest duration
            longest_task = max(current_tasks,
                             key=lambda t: (t.planned_end - t.planned_start).days)
            critical_path.append(longest_task)

            # Find successors
            current_tasks = [
                t for t in tasks
                if longest_task.task_id in t.predecessors
            ]

        return critical_path

    def track_progress(self, project_id: str) -> dict:
        """Track project progress and performance"""
        project = self.projects.get(project_id)
        if not project:
            return {'error': 'Project not found'}

        project_tasks = [t for t in self.tasks.values() if t.project_id == project_id]

        # Calculate overall progress
        if project_tasks:
            overall_progress = sum(t.progress_percent for t in project_tasks) / len(project_tasks)
        else:
            overall_progress = 0.0

        # Calculate schedule performance
        total_planned_days = (project.planned_end_date - project.start_date).days
        elapsed_days = (datetime.now() - project.start_date).days
        planned_progress = (elapsed_days / total_planned_days * 100) if total_planned_days > 0 else 0

        schedule_variance = overall_progress - planned_progress

        # Calculate cost performance
        cost_variance = project.budget - project.current_cost
        cost_performance_index = float(project.budget / project.current_cost) if project.current_cost > 0 else 1.0

        # Calculate estimated completion date
        if overall_progress > 0:
            estimated_total_days = elapsed_days / (overall_progress / 100)
            estimated_completion = project.start_date + timedelta(days=estimated_total_days)
        else:
            estimated_completion = project.planned_end_date

        return {
            'project_id': project_id,
            'overall_progress_percent': overall_progress,
            'schedule_variance_percent': schedule_variance,
            'schedule_status': 'ahead' if schedule_variance > 0 else 'behind' if schedule_variance < 0 else 'on_track',
            'cost_variance': float(cost_variance),
            'cost_performance_index': cost_performance_index,
            'budget_status': 'under' if cost_variance > 0 else 'over',
            'estimated_completion': estimated_completion.isoformat(),
            'days_variance': (estimated_completion - project.planned_end_date).days
        }

    def manage_change_order(self, project_id: str, change_data: dict) -> dict:
        """Manage construction change orders"""
        project = self.projects.get(project_id)
        if not project:
            return {'error': 'Project not found'}

        change_order = {
            'co_id': self._generate_co_id(),
            'project_id': project_id,
            'description': change_data['description'],
            'reason': change_data['reason'],
            'cost_impact': Decimal(str(change_data['cost_impact'])),
            'schedule_impact_days': change_data.get('schedule_impact_days', 0),
            'submitted_by': change_data['submitted_by'],
            'submitted_date': datetime.now(),
            'status': 'pending_approval',
            'approved': False
        }

        self.change_orders.append(change_order)

        return {
            'change_order_id': change_order['co_id'],
            'cost_impact': float(change_order['cost_impact']),
            'schedule_impact_days': change_order['schedule_impact_days'],
            'new_budget': float(project.budget + change_order['cost_impact']),
            'new_completion_date': (
                project.planned_end_date + timedelta(days=change_order['schedule_impact_days'])
            ).isoformat()
        }

    def estimate_costs(self, project_type: str, square_footage: float, specifications: dict) -> dict:
        """Estimate construction costs"""
        # Cost per square foot by project type
        base_costs = {
            'residential_basic': Decimal('150'),
            'residential_luxury': Decimal('300'),
            'commercial_office': Decimal('200'),
            'industrial_warehouse': Decimal('75')
        }

        base_cost_per_sf = base_costs.get(project_type, Decimal('150'))

        # Calculate base cost
        base_cost = base_cost_per_sf * Decimal(str(square_footage))

        # Add complexity factors
        complexity_factor = Decimal('1.0')

        if specifications.get('custom_design', False):
            complexity_factor += Decimal('0.15')

        if specifications.get('sustainable_materials', False):
            complexity_factor += Decimal('0.10')

        if specifications.get('complex_site', False):
            complexity_factor += Decimal('0.20')

        adjusted_cost = base_cost * complexity_factor

        # Add contingency (10%)
        contingency = adjusted_cost * Decimal('0.10')

        # Breakdown by category
        breakdown = {
            'site_work': float(adjusted_cost * Decimal('0.08')),
            'foundation': float(adjusted_cost * Decimal('0.12')),
            'structure': float(adjusted_cost * Decimal('0.25')),
            'exterior': float(adjusted_cost * Decimal('0.15')),
            'interior': float(adjusted_cost * Decimal('0.20')),
            'mep': float(adjusted_cost * Decimal('0.20'))
        }

        total_estimate = adjusted_cost + contingency

        return {
            'project_type': project_type,
            'square_footage': square_footage,
            'base_cost_per_sf': float(base_cost_per_sf),
            'complexity_factor': float(complexity_factor),
            'adjusted_cost': float(adjusted_cost),
            'contingency': float(contingency),
            'total_estimate': float(total_estimate),
            'cost_breakdown': breakdown
        }

    def _generate_task_id(self) -> str:
        import uuid
        return f"TASK-{uuid.uuid4().hex[:8].upper()}"

    def _generate_co_id(self) -> str:
        import uuid
        return f"CO-{uuid.uuid4().hex[:6].upper()}"

Safety Management System

@dataclass
class SafetyIncident:
    """Safety incident report"""
    incident_id: str
    project_id: str
    incident_type: str  # 'injury', 'near_miss', 'property_damage'
    severity: str  # 'minor', 'moderate', 'severe', 'fatal'
    description: str
    location: str
    occurred_at: datetime
    reported_by: str
    injured_person: Optional[str]
    root_cause: Optional[str]
    corrective_actions: List[str]

class SafetyManagementSystem:
    """Construction safety management"""

    def __init__(self):
        self.incidents = []
        self.safety_inspections = []
        self.training_records = []

    def conduct_safety_inspection(self, project_id: str, inspector: str) -> dict:
        """Conduct safety inspection"""
        inspection_items = [
            'Personal protective equipment (PPE)',
            'Fall protection systems',
            'Scaffolding integrity',
            'Electrical safety',
            'Equipment guarding',
            'Housekeeping',
            'Fire prevention',
            'First aid availability',
            'Emergency exits',
            'Signage and barriers'
        ]

        violations = []
        passed_items = []

        # Simulate inspection (in production, would be actual checklist)
        for item in inspection_items:
            # Random pass/fail for demonstration
            import random
            if random.random() < 0.85:  # 85% pass rate
                passed_items.append(item)
            else:
                violations.append({
                    'item': item,
                    'severity': random.choice(['minor', 'major']),
                    'action_required': 'Correct immediately' if random.random() < 0.3 else 'Correct within 24 hours'
                })

        inspection = {
            'inspection_id': self._generate_inspection_id(),
            'project_id': project_id,
            'inspector': inspector,
            'inspection_date': datetime.now(),
            'items_inspected': len(inspection_items),
            'items_passed': len(passed_items),
            'violations': violations,
            'overall_score': (len(passed_items) / len(inspection_items)) * 100,
            'status': 'pass' if len(violations) == 0 else 'fail'
        }

        self.safety_inspections.append(inspection)

        return inspection

    def report_incident(self, incident_data: dict) -> SafetyIncident:
        """Report safety incident"""
        incident = SafetyIncident(
            incident_id=self._generate_incident_id(),
            project_id=incident_data['project_id'],
            incident_type=incident_data['incident_type'],
            severity=incident_data['severity'],
            description=incident_data['description'],
            location=incident_data['location'],
            occurred_at=incident_data['occurred_at'],
            reported_by=incident_data['reported_by'],
            injured_person=incident_data.get('injured_person'),
            root_cause=None,
            corrective_actions=[]
        )

        self.incidents.append(incident)

        # Notify relevant parties
        self._notify_incident(incident)

        return incident

    def calculate_safety_metrics(self, project_id: str, hours_worked: float) -> dict:
        """Calculate safety performance metrics"""
        project_incidents = [
            i for i in self.incidents
            if i.project_id == project_id
        ]

        # Count recordable incidents
        recordable_incidents = [
            i for i in project_incidents
            if i.incident_type == 'injury' and i.severity in ['moderate', 'severe', 'fatal']
        ]

        # OSHA Incident Rate = (Number of incidents × 200,000) / Total hours worked
        if hours_worked > 0:
            incident_rate = (len(recordable_incidents) * 200000) / hours_worked
        else:
            incident_rate = 0

        # Days Away, Restricted, or Transferred (DART) Rate
        dart_incidents = [
            i for i in recordable_incidents
            if i.severity in ['severe', 'fatal']
        ]
        dart_rate = (len(dart_incidents) * 200000) / hours_worked if hours_worked > 0 else 0

        return {
            'project_id': project_id,
            'total_hours_worked': hours_worked,
            'total_incidents': len(project_incidents),
            'recordable_incidents': len(recordable_incidents),
            'incident_rate': incident_rate,
            'dart_rate': dart_rate,
            'safety_rating': 'Excellent' if incident_rate < 1.0 else
                           'Good' if incident_rate < 3.0 else
                           'Needs Improvement'
        }

    def _notify_incident(self, incident: SafetyIncident):
        """Notify stakeholders of incident"""
        # Implementation would send notifications
        pass

    def _generate_inspection_id(self) -> str:
        import uuid
        return f"INS-{uuid.uuid4().hex[:8].upper()}"

    def _generate_incident_id(self) -> str:
        import uuid
        return f"INC-{uuid.uuid4().hex[:8].upper()}"

BIM Integration

class BIMManagement:
    """Building Information Modeling management"""

    def __init__(self):
        self.models = {}
        self.clash_detections = []

    def perform_clash_detection(self, model_ids: List[str]) -> dict:
        """Detect clashes between BIM models"""
        # Simulate clash detection between disciplines
        # In production, would use BIM software APIs (Revit, Navisworks)

        clashes = [
            {
                'clash_id': 'CLASH-001',
                'type': 'hard',  # 'hard' or 'soft'
                'disciplines': ['structural', 'mep'],
                'description': 'Steel beam conflicts with HVAC duct',
                'location': 'Level 3, Grid B-4',
                'severity': 'high',
                'status': 'open'
            },
            {
                'clash_id': 'CLASH-002',
                'type': 'soft',
                'disciplines': ['architectural', 'mep'],
                'description': 'Insufficient clearance for plumbing access',
                'location': 'Level 2, Grid C-2',
                'severity': 'medium',
                'status': 'open'
            }
        ]

        return {
            'models_analyzed': model_ids,
            'total_clashes': len(clashes),
            'hard_clashes': len([c for c in clashes if c['type'] == 'hard']),
            'soft_clashes': len([c for c in clashes if c['type'] == 'soft']),
            'clashes': clashes
        }

    def extract_quantities(self, model_id: str) -> dict:
        """Extract material quantities from BIM model"""
        # Simulate quantity takeoff
        # In production, would extract from actual BIM model

        quantities = {
            'concrete': {
                'unit': 'cubic_yards',
                'quantity': 1250,
                'cost_per_unit': 150,
                'total_cost': 187500
            },
            'rebar': {
                'unit': 'tons',
                'quantity': 85,
                'cost_per_unit': 800,
                'total_cost': 68000
            },
            'structural_steel': {
                'unit': 'tons',
                'quantity': 120,
                'cost_per_unit': 1200,
                'total_cost': 144000
            }
        }

        total_cost = sum(item['total_cost'] for item in quantities.values())

        return {
            'model_id': model_id,
            'quantities': quantities,
            'total_estimated_cost': total_cost
        }

Best Practices

Project Management

  • Use critical path method for scheduling
  • Implement regular progress reviews
  • Maintain detailed documentation
  • Use integrated project delivery (IPD)
  • Implement lean construction principles
  • Track key performance indicators
  • Conduct regular stakeholder meetings

Cost Control

  • Develop detailed estimates
  • Track costs continuously
  • Manage change orders effectively
  • Use value engineering
  • Implement cost coding systems
  • Monitor cash flow
  • Conduct regular audits

Safety Management

  • Implement comprehensive safety program
  • Conduct regular toolbox talks
  • Provide proper PPE
  • Maintain OSHA compliance
  • Investigate all incidents
  • Track safety metrics
  • Promote safety culture

BIM Implementation

  • Use BIM for clash detection
  • Implement 4D scheduling
  • Extract quantities from model
  • Enable collaboration
  • Maintain model coordination
  • Use BIM for facility management
  • Follow ISO 19650 standards

Anti-Patterns

❌ Poor project planning ❌ Inadequate cost tracking ❌ No safety program ❌ Poor communication ❌ Ignoring change orders ❌ No quality control ❌ Inadequate documentation ❌ Poor subcontractor management ❌ No risk management

Resources

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/construction-expert

Related Skills

github-project-management

Other

This GitHub project management skill enables developers to automate issue tracking, project boards, and sprint planning using AI swarm coordination. It's ideal for teams needing synchronized project management across multiple repositories with automated workflows. The skill requires GitHub CLI access and integrates with Claude Flow or RUV swarm MCP servers.

View skill

sdd

Meta

This Claude skill provides guidance on Spec-Driven Development using GitHub's Spec-Kit for both new and existing projects. It helps developers create executable specifications and manage features through structured workflows. After generating artifacts, it automatically delivers 10-point summaries with feature status tracking for natural language feature management.

View skill

github-project-management

Other

This Claude Skill provides comprehensive GitHub project management using AI swarm coordination for developers. It enables automated issue tracking, project board synchronization, and sprint planning workflows. Use this skill when you need to streamline GitHub project management with intelligent automation across multiple repositories.

View skill

github-project-management

Other

This skill enables automated GitHub project management through AI swarm coordination for issue tracking, project board synchronization, and sprint planning. It's ideal for developers managing Agile workflows who want to automate project organization across repositories. Use it when you need to coordinate multiple AI agents to handle complex GitHub project maintenance tasks.

View skill