AgentDB Vector Search
About
AgentDB Vector Search enables semantic vector search for intelligent document retrieval, similarity matching, and context-aware querying. It is designed for building RAG systems, semantic search engines, or intelligent knowledge bases. The skill provides high-performance search with HNSW indexing and sub-millisecond latency.
Documentation
AgentDB Vector Search
What This Skill Does
Implements vector-based semantic search using AgentDB's high-performance vector database with 150x-12,500x faster operations than traditional solutions. Features HNSW indexing, quantization, and sub-millisecond search (<100µs).
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow or standalone)
- OpenAI API key (for embeddings) or custom embedding model
Quick Start with CLI
Initialize Vector Database
# Initialize with default dimensions (1536 for OpenAI ada-002)
npx agentdb@latest init ./vectors.db
# Custom dimensions for different embedding models
npx agentdb@latest init ./vectors.db --dimension 768 # sentence-transformers
npx agentdb@latest init ./vectors.db --dimension 384 # all-MiniLM-L6-v2
# Use preset configurations
npx agentdb@latest init ./vectors.db --preset small # <10K vectors
npx agentdb@latest init ./vectors.db --preset medium # 10K-100K vectors
npx agentdb@latest init ./vectors.db --preset large # >100K vectors
# In-memory database for testing
npx agentdb@latest init ./vectors.db --in-memory
Query Vector Database
# Basic similarity search
npx agentdb@latest query ./vectors.db "[0.1,0.2,0.3,...]"
# Top-k results
npx agentdb@latest query ./vectors.db "[0.1,0.2,0.3]" -k 10
# With similarity threshold (cosine similarity)
npx agentdb@latest query ./vectors.db "0.1 0.2 0.3" -t 0.75 -m cosine
# Different distance metrics
npx agentdb@latest query ./vectors.db "[...]" -m euclidean # L2 distance
npx agentdb@latest query ./vectors.db "[...]" -m dot # Dot product
# JSON output for automation
npx agentdb@latest query ./vectors.db "[...]" -f json -k 5
# Verbose output with distances
npx agentdb@latest query ./vectors.db "[...]" -v
Import/Export Vectors
# Export vectors to JSON
npx agentdb@latest export ./vectors.db ./backup.json
# Import vectors from JSON
npx agentdb@latest import ./backup.json
# Get database statistics
npx agentdb@latest stats ./vectors.db
Quick Start with API
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';
// Initialize with vector search optimizations
const adapter = await createAgentDBAdapter({
dbPath: '.agentdb/vectors.db',
enableLearning: false, // Vector search only
enableReasoning: true, // Enable semantic matching
quantizationType: 'binary', // 32x memory reduction
cacheSize: 1000, // Fast retrieval
});
// Store document with embedding
const text = "The quantum computer achieved 100 qubits";
const embedding = await computeEmbedding(text);
await adapter.insertPattern({
id: '',
type: 'document',
domain: 'technology',
pattern_data: JSON.stringify({
embedding,
text,
metadata: { category: "quantum", date: "2025-01-15" }
}),
confidence: 1.0,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
// Semantic search with MMR (Maximal Marginal Relevance)
const queryEmbedding = await computeEmbedding("quantum computing advances");
const results = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'technology',
k: 10,
useMMR: true, // Diverse results
synthesizeContext: true, // Rich context
});
Core Features
1. Vector Storage
// Store with automatic embedding
await db.storeWithEmbedding({
content: "Your document text",
metadata: { source: "docs", page: 42 }
});
2. Similarity Search
// Find similar documents
const similar = await db.findSimilar("quantum computing", {
limit: 5,
minScore: 0.75
});
3. Hybrid Search (Vector + Metadata)
// Combine vector similarity with metadata filtering
const results = await db.hybridSearch({
query: "machine learning models",
filters: {
category: "research",
date: { $gte: "2024-01-01" }
},
limit: 20
});
Advanced Usage
RAG (Retrieval Augmented Generation)
// Build RAG pipeline
async function ragQuery(question: string) {
// 1. Get relevant context
const context = await db.searchSimilar(
await embed(question),
{ limit: 5, threshold: 0.7 }
);
// 2. Generate answer with context
const prompt = `Context: ${context.map(c => c.text).join('\n')}
Question: ${question}`;
return await llm.generate(prompt);
}
Batch Operations
// Efficient batch storage
await db.batchStore(documents.map(doc => ({
text: doc.content,
embedding: doc.vector,
metadata: doc.meta
})));
MCP Server Integration
# Start AgentDB MCP server for Claude Code
npx agentdb@latest mcp
# Add to Claude Code (one-time setup)
claude mcp add agentdb npx agentdb@latest mcp
# Now use MCP tools in Claude Code:
# - agentdb_query: Semantic vector search
# - agentdb_store: Store documents with embeddings
# - agentdb_stats: Database statistics
Performance Benchmarks
# Run comprehensive benchmarks
npx agentdb@latest benchmark
# Results:
# ✅ Pattern Search: 150x faster (100µs vs 15ms)
# ✅ Batch Insert: 500x faster (2ms vs 1s for 100 vectors)
# ✅ Large-scale Query: 12,500x faster (8ms vs 100s at 1M vectors)
# ✅ Memory Efficiency: 4-32x reduction with quantization
Quantization Options
AgentDB provides multiple quantization strategies for memory efficiency:
Binary Quantization (32x reduction)
const adapter = await createAgentDBAdapter({
quantizationType: 'binary', // 768-dim → 96 bytes
});
Scalar Quantization (4x reduction)
const adapter = await createAgentDBAdapter({
quantizationType: 'scalar', // 768-dim → 768 bytes
});
Product Quantization (8-16x reduction)
const adapter = await createAgentDBAdapter({
quantizationType: 'product', // 768-dim → 48-96 bytes
});
Distance Metrics
# Cosine similarity (default, best for most use cases)
npx agentdb@latest query ./db.sqlite "[...]" -m cosine
# Euclidean distance (L2 norm)
npx agentdb@latest query ./db.sqlite "[...]" -m euclidean
# Dot product (for normalized vectors)
npx agentdb@latest query ./db.sqlite "[...]" -m dot
Advanced Features
HNSW Indexing
- O(log n) search complexity
- Sub-millisecond retrieval (<100µs)
- Automatic index building
Caching
- 1000 pattern in-memory cache
- <1ms pattern retrieval
- Automatic cache invalidation
MMR (Maximal Marginal Relevance)
- Diverse result sets
- Avoid redundancy
- Balance relevance and diversity
Performance Tips
- Enable HNSW indexing: Automatic with AgentDB, 10-100x faster
- Use quantization: Binary (32x), Scalar (4x), Product (8-16x) memory reduction
- Batch operations: 500x faster for bulk inserts
- Match dimensions: 1536 (OpenAI), 768 (sentence-transformers), 384 (MiniLM)
- Similarity threshold: Start at 0.7 for quality, adjust based on use case
- Enable caching: 1000 pattern cache for frequent queries
Troubleshooting
Issue: Slow search performance
# Check if HNSW indexing is enabled (automatic)
npx agentdb@latest stats ./vectors.db
# Expected: <100µs search time
Issue: High memory usage
# Enable binary quantization (32x reduction)
# Use in adapter: quantizationType: 'binary'
Issue: Poor relevance
# Adjust similarity threshold
npx agentdb@latest query ./db.sqlite "[...]" -t 0.8 # Higher threshold
# Or use MMR for diverse results
# Use in adapter: useMMR: true
Issue: Wrong dimensions
# Check embedding model dimensions:
# - OpenAI ada-002: 1536
# - sentence-transformers: 768
# - all-MiniLM-L6-v2: 384
npx agentdb@latest init ./db.sqlite --dimension 768
Database Statistics
# Get comprehensive stats
npx agentdb@latest stats ./vectors.db
# Shows:
# - Total patterns/vectors
# - Database size
# - Average confidence
# - Domains distribution
# - Index status
Performance Characteristics
- Vector Search: <100µs (HNSW indexing)
- Pattern Retrieval: <1ms (with cache)
- Batch Insert: 2ms for 100 vectors
- Memory Efficiency: 4-32x reduction with quantization
- Scalability: Handles 1M+ vectors efficiently
- Latency: Sub-millisecond for most operations
Learn More
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- Documentation: node_modules/agentic-flow/docs/AGENTDB_INTEGRATION.md
- MCP Integration:
npx agentdb@latest mcpfor Claude Code - Website: https://agentdb.ruv.io
- CLI Help:
npx agentdb@latest --help - Command Help:
npx agentdb@latest help <command>
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/agentdb-vector-searchCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
llamaindex
MetaLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
