Back to Skills

terraform-module-library

lifangda
Updated Today
75 views
11
11
View on GitHub
Metadesign

About

This skill helps developers build reusable, production-ready Terraform modules for AWS, Azure, and GCP. It provides standardized patterns for common infrastructure like VPCs, Kubernetes clusters, and databases. Use it to establish IaC best practices and create multi-cloud compatible modules.

Documentation

Terraform Module Library

Production-ready Terraform module patterns for AWS, Azure, and GCP infrastructure.

Purpose

Create reusable, well-tested Terraform modules for common cloud infrastructure patterns across multiple cloud providers.

When to Use

  • Build reusable infrastructure components
  • Standardize cloud resource provisioning
  • Implement infrastructure as code best practices
  • Create multi-cloud compatible modules
  • Establish organizational Terraform standards

Module Structure

terraform-modules/
├── aws/
│   ├── vpc/
│   ├── eks/
│   ├── rds/
│   └── s3/
├── azure/
│   ├── vnet/
│   ├── aks/
│   └── storage/
└── gcp/
    ├── vpc/
    ├── gke/
    └── cloud-sql/

Standard Module Pattern

module-name/
├── main.tf          # Main resources
├── variables.tf     # Input variables
├── outputs.tf       # Output values
├── versions.tf      # Provider versions
├── README.md        # Documentation
├── examples/        # Usage examples
│   └── complete/
│       ├── main.tf
│       └── variables.tf
└── tests/           # Terratest files
    └── module_test.go

AWS VPC Module Example

main.tf:

resource "aws_vpc" "main" {
  cidr_block           = var.cidr_block
  enable_dns_hostnames = var.enable_dns_hostnames
  enable_dns_support   = var.enable_dns_support

  tags = merge(
    {
      Name = var.name
    },
    var.tags
  )
}

resource "aws_subnet" "private" {
  count             = length(var.private_subnet_cidrs)
  vpc_id            = aws_vpc.main.id
  cidr_block        = var.private_subnet_cidrs[count.index]
  availability_zone = var.availability_zones[count.index]

  tags = merge(
    {
      Name = "${var.name}-private-${count.index + 1}"
      Tier = "private"
    },
    var.tags
  )
}

resource "aws_internet_gateway" "main" {
  count  = var.create_internet_gateway ? 1 : 0
  vpc_id = aws_vpc.main.id

  tags = merge(
    {
      Name = "${var.name}-igw"
    },
    var.tags
  )
}

variables.tf:

variable "name" {
  description = "Name of the VPC"
  type        = string
}

variable "cidr_block" {
  description = "CIDR block for VPC"
  type        = string
  validation {
    condition     = can(regex("^([0-9]{1,3}\\.){3}[0-9]{1,3}/[0-9]{1,2}$", var.cidr_block))
    error_message = "CIDR block must be valid IPv4 CIDR notation."
  }
}

variable "availability_zones" {
  description = "List of availability zones"
  type        = list(string)
}

variable "private_subnet_cidrs" {
  description = "CIDR blocks for private subnets"
  type        = list(string)
  default     = []
}

variable "enable_dns_hostnames" {
  description = "Enable DNS hostnames in VPC"
  type        = bool
  default     = true
}

variable "tags" {
  description = "Additional tags"
  type        = map(string)
  default     = {}
}

outputs.tf:

output "vpc_id" {
  description = "ID of the VPC"
  value       = aws_vpc.main.id
}

output "private_subnet_ids" {
  description = "IDs of private subnets"
  value       = aws_subnet.private[*].id
}

output "vpc_cidr_block" {
  description = "CIDR block of VPC"
  value       = aws_vpc.main.cidr_block
}

Best Practices

  1. Use semantic versioning for modules
  2. Document all variables with descriptions
  3. Provide examples in examples/ directory
  4. Use validation blocks for input validation
  5. Output important attributes for module composition
  6. Pin provider versions in versions.tf
  7. Use locals for computed values
  8. Implement conditional resources with count/for_each
  9. Test modules with Terratest
  10. Tag all resources consistently

Module Composition

module "vpc" {
  source = "../../modules/aws/vpc"

  name               = "production"
  cidr_block         = "10.0.0.0/16"
  availability_zones = ["us-west-2a", "us-west-2b", "us-west-2c"]

  private_subnet_cidrs = [
    "10.0.1.0/24",
    "10.0.2.0/24",
    "10.0.3.0/24"
  ]

  tags = {
    Environment = "production"
    ManagedBy   = "terraform"
  }
}

module "rds" {
  source = "../../modules/aws/rds"

  identifier     = "production-db"
  engine         = "postgres"
  engine_version = "15.3"
  instance_class = "db.t3.large"

  vpc_id     = module.vpc.vpc_id
  subnet_ids = module.vpc.private_subnet_ids

  tags = {
    Environment = "production"
  }
}

Reference Files

  • assets/vpc-module/ - Complete VPC module example
  • assets/rds-module/ - RDS module example
  • references/aws-modules.md - AWS module patterns
  • references/azure-modules.md - Azure module patterns
  • references/gcp-modules.md - GCP module patterns

Testing

// tests/vpc_test.go
package test

import (
    "testing"
    "github.com/gruntwork-io/terratest/modules/terraform"
    "github.com/stretchr/testify/assert"
)

func TestVPCModule(t *testing.T) {
    terraformOptions := &terraform.Options{
        TerraformDir: "../examples/complete",
    }

    defer terraform.Destroy(t, terraformOptions)
    terraform.InitAndApply(t, terraformOptions)

    vpcID := terraform.Output(t, terraformOptions, "vpc_id")
    assert.NotEmpty(t, vpcID)
}

Related Skills

  • multi-cloud-architecture - For architectural decisions
  • cost-optimization - For cost-effective designs

Quick Install

/plugin add https://github.com/lifangda/claude-plugins/tree/main/terraform-module-library

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

lifangda/claude-plugins
Path: cli-tool/skills-library/cloud-infrastructure/terraform-module-library

Related Skills

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaindex

Meta

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

View skill

business-rule-documentation

Meta

This skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.

View skill

project-structure

Meta

This skill provides comprehensive project structure guidelines and best practices for organizing codebases across various project types. It offers standardized directory patterns for monorepos, web frameworks, backend services, and libraries to ensure scalable, maintainable architecture. Use it when designing new project structures, organizing monorepo workspaces, or establishing code organization conventions for teams.

View skill