ReasoningBank with AgentDB
About
This skill implements ReasoningBank adaptive learning using AgentDB's high-performance vector database for building self-improving AI agents. It provides trajectory tracking, verdict judgment, memory distillation, and pattern recognition capabilities to optimize decision-making. Use it when creating self-learning agents or implementing experience replay systems that require fast memory access and pattern retrieval.
Documentation
ReasoningBank with AgentDB
What This Skill Does
Provides ReasoningBank adaptive learning patterns using AgentDB's high-performance backend (150x-12,500x faster). Enables agents to learn from experiences, judge outcomes, distill memories, and improve decision-making over time with 100% backward compatibility.
Performance: 150x faster pattern retrieval, 500x faster batch operations, <1ms memory access.
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow)
- Understanding of reinforcement learning concepts (optional)
Quick Start with CLI
Initialize ReasoningBank Database
# Initialize AgentDB for ReasoningBank
npx agentdb@latest init ./.agentdb/reasoningbank.db --dimension 1536
# Start MCP server for Claude Code integration
npx agentdb@latest mcp
claude mcp add agentdb npx agentdb@latest mcp
Migrate from Legacy ReasoningBank
# Automatic migration with validation
npx agentdb@latest migrate --source .swarm/memory.db
# Verify migration
npx agentdb@latest stats ./.agentdb/reasoningbank.db
Quick Start with API
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank with AgentDB
const rb = await createAgentDBAdapter({
dbPath: '.agentdb/reasoningbank.db',
enableLearning: true, // Enable learning plugins
enableReasoning: true, // Enable reasoning agents
cacheSize: 1000, // 1000 pattern cache
});
// Store successful experience
const query = "How to optimize database queries?";
const embedding = await computeEmbedding(query);
await rb.insertPattern({
id: '',
type: 'experience',
domain: 'database-optimization',
pattern_data: JSON.stringify({
embedding,
pattern: {
query,
approach: 'indexing + query optimization',
outcome: 'success',
metrics: { latency_reduction: 0.85 }
}
}),
confidence: 0.95,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
// Retrieve similar experiences with reasoning
const result = await rb.retrieveWithReasoning(embedding, {
domain: 'database-optimization',
k: 5,
useMMR: true, // Diverse results
synthesizeContext: true, // Rich context synthesis
});
console.log('Memories:', result.memories);
console.log('Context:', result.context);
console.log('Patterns:', result.patterns);
Core ReasoningBank Concepts
1. Trajectory Tracking
Track agent execution paths and outcomes:
// Record trajectory (sequence of actions)
const trajectory = {
task: 'optimize-api-endpoint',
steps: [
{ action: 'analyze-bottleneck', result: 'found N+1 query' },
{ action: 'add-eager-loading', result: 'reduced queries' },
{ action: 'add-caching', result: 'improved latency' }
],
outcome: 'success',
metrics: { latency_before: 2500, latency_after: 150 }
};
const embedding = await computeEmbedding(JSON.stringify(trajectory));
await rb.insertPattern({
id: '',
type: 'trajectory',
domain: 'api-optimization',
pattern_data: JSON.stringify({ embedding, pattern: trajectory }),
confidence: 0.9,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
2. Verdict Judgment
Judge whether a trajectory was successful:
// Retrieve similar past trajectories
const similar = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'api-optimization',
k: 10,
});
// Judge based on similarity to successful patterns
const verdict = similar.memories.filter(m =>
m.pattern.outcome === 'success' &&
m.similarity > 0.8
).length > 5 ? 'likely_success' : 'needs_review';
console.log('Verdict:', verdict);
console.log('Confidence:', similar.memories[0]?.similarity || 0);
3. Memory Distillation
Consolidate similar experiences into patterns:
// Get all experiences in domain
const experiences = await rb.retrieveWithReasoning(embedding, {
domain: 'api-optimization',
k: 100,
optimizeMemory: true, // Automatic consolidation
});
// Distill into high-level pattern
const distilledPattern = {
domain: 'api-optimization',
pattern: 'For N+1 queries: add eager loading, then cache',
success_rate: 0.92,
sample_size: experiences.memories.length,
confidence: 0.95
};
await rb.insertPattern({
id: '',
type: 'distilled-pattern',
domain: 'api-optimization',
pattern_data: JSON.stringify({
embedding: await computeEmbedding(JSON.stringify(distilledPattern)),
pattern: distilledPattern
}),
confidence: 0.95,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
Integration with Reasoning Agents
AgentDB provides 4 reasoning modules that enhance ReasoningBank:
1. PatternMatcher
Find similar successful patterns:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'problem-solving',
k: 10,
useMMR: true, // Maximal Marginal Relevance for diversity
});
// PatternMatcher returns diverse, relevant memories
result.memories.forEach(mem => {
console.log(`Pattern: ${mem.pattern.approach}`);
console.log(`Similarity: ${mem.similarity}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
2. ContextSynthesizer
Generate rich context from multiple memories:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'code-optimization',
synthesizeContext: true, // Enable context synthesis
k: 5,
});
// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 5 similar optimizations, the most effective approach
// involves profiling, identifying bottlenecks, and applying targeted
// improvements. Success rate: 87%"
3. MemoryOptimizer
Automatically consolidate and prune:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'testing',
optimizeMemory: true, // Enable automatic optimization
});
// MemoryOptimizer consolidates similar patterns and prunes low-quality
console.log('Optimizations:', result.optimizations);
// { consolidated: 15, pruned: 3, improved_quality: 0.12 }
4. ExperienceCurator
Filter by quality and relevance:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'debugging',
k: 20,
minConfidence: 0.8, // Only high-confidence experiences
});
// ExperienceCurator returns only quality experiences
result.memories.forEach(mem => {
console.log(`Confidence: ${mem.confidence}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
Legacy API Compatibility
AgentDB maintains 100% backward compatibility with legacy ReasoningBank:
import {
retrieveMemories,
judgeTrajectory,
distillMemories
} from 'agentic-flow/reasoningbank';
// Legacy API works unchanged (uses AgentDB backend automatically)
const memories = await retrieveMemories(query, {
domain: 'code-generation',
agent: 'coder'
});
const verdict = await judgeTrajectory(trajectory, query);
const newMemories = await distillMemories(
trajectory,
verdict,
query,
{ domain: 'code-generation' }
);
Performance Characteristics
- Pattern Search: 150x faster (100µs vs 15ms)
- Memory Retrieval: <1ms (with cache)
- Batch Insert: 500x faster (2ms vs 1s for 100 patterns)
- Trajectory Judgment: <5ms (including retrieval + analysis)
- Memory Distillation: <50ms (consolidate 100 patterns)
Advanced Patterns
Hierarchical Memory
Organize memories by abstraction level:
// Low-level: Specific implementation
await rb.insertPattern({
type: 'concrete',
domain: 'debugging/null-pointer',
pattern_data: JSON.stringify({
embedding,
pattern: { bug: 'NPE in UserService.getUser()', fix: 'Add null check' }
}),
confidence: 0.9,
// ...
});
// Mid-level: Pattern across similar cases
await rb.insertPattern({
type: 'pattern',
domain: 'debugging',
pattern_data: JSON.stringify({
embedding,
pattern: { category: 'null-pointer', approach: 'defensive-checks' }
}),
confidence: 0.85,
// ...
});
// High-level: General principle
await rb.insertPattern({
type: 'principle',
domain: 'software-engineering',
pattern_data: JSON.stringify({
embedding,
pattern: { principle: 'fail-fast with clear errors' }
}),
confidence: 0.95,
// ...
});
Multi-Domain Learning
Transfer learning across domains:
// Learn from backend optimization
const backendExperience = await rb.retrieveWithReasoning(embedding, {
domain: 'backend-optimization',
k: 10,
});
// Apply to frontend optimization
const transferredKnowledge = backendExperience.memories.map(mem => ({
...mem,
domain: 'frontend-optimization',
adapted: true,
}));
CLI Operations
Database Management
# Export trajectories and patterns
npx agentdb@latest export ./.agentdb/reasoningbank.db ./backup.json
# Import experiences
npx agentdb@latest import ./experiences.json
# Get statistics
npx agentdb@latest stats ./.agentdb/reasoningbank.db
# Shows: total patterns, domains, confidence distribution
Migration
# Migrate from legacy ReasoningBank
npx agentdb@latest migrate --source .swarm/memory.db --target .agentdb/reasoningbank.db
# Validate migration
npx agentdb@latest stats .agentdb/reasoningbank.db
Troubleshooting
Issue: Migration fails
# Check source database exists
ls -la .swarm/memory.db
# Run with verbose logging
DEBUG=agentdb:* npx agentdb@latest migrate --source .swarm/memory.db
Issue: Low confidence scores
// Enable context synthesis for better quality
const result = await rb.retrieveWithReasoning(embedding, {
synthesizeContext: true,
useMMR: true,
k: 10,
});
Issue: Memory growing too large
// Enable automatic optimization
const result = await rb.retrieveWithReasoning(embedding, {
optimizeMemory: true, // Consolidates similar patterns
});
// Or manually optimize
await rb.optimize();
Learn More
- AgentDB Integration: node_modules/agentic-flow/docs/AGENTDB_INTEGRATION.md
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- MCP Integration:
npx agentdb@latest mcp - Website: https://agentdb.ruv.io
Category: Machine Learning / Reinforcement Learning Difficulty: Intermediate Estimated Time: 20-30 minutes
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/reasoningbank-agentdbCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
llamaindex
MetaLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
issue-documentation
MetaThis skill provides standardized templates for comprehensive issue documentation across platforms like GitHub, Jira, and Linear. It helps developers systematically document problems, reproduction steps, root causes, and solutions. Use it when creating bug reports, incident tracking, or troubleshooting guides to ensure clear communication.
