Back to Skills

AgentDB Advanced Features

DNYoussef
Updated Today
9 views
0
View on GitHub
Metaaidesigndata

About

This skill teaches advanced AgentDB features for building distributed AI systems and multi-agent coordination. It covers QUIC synchronization for sub-millisecond cross-node communication, multi-database management, and hybrid search with custom distance metrics. Use it when developing applications requiring sophisticated vector search or distributed system integration.

Documentation

AgentDB Advanced Features

What This Skill Does

Covers advanced AgentDB capabilities for distributed systems, multi-database coordination, custom distance metrics, hybrid search (vector + metadata), QUIC synchronization, and production deployment patterns. Enables building sophisticated AI systems with sub-millisecond cross-node communication and advanced search capabilities.

Performance: <1ms QUIC sync, hybrid search with filters, custom distance metrics.

Prerequisites

  • Node.js 18+
  • AgentDB v1.0.7+ (via agentic-flow)
  • Understanding of distributed systems (for QUIC sync)
  • Vector search fundamentals

QUIC Synchronization

What is QUIC Sync?

QUIC (Quick UDP Internet Connections) enables sub-millisecond latency synchronization between AgentDB instances across network boundaries with automatic retry, multiplexing, and encryption.

Benefits:

  • <1ms latency between nodes
  • Multiplexed streams (multiple operations simultaneously)
  • Built-in encryption (TLS 1.3)
  • Automatic retry and recovery
  • Event-based broadcasting

Enable QUIC Sync

import { createAgentDBAdapter } from 'agentic-flow/reasoningbank';

// Initialize with QUIC synchronization
const adapter = await createAgentDBAdapter({
  dbPath: '.agentdb/distributed.db',
  enableQUICSync: true,
  syncPort: 4433,
  syncPeers: [
    '192.168.1.10:4433',
    '192.168.1.11:4433',
    '192.168.1.12:4433',
  ],
});

// Patterns automatically sync across all peers
await adapter.insertPattern({
  // ... pattern data
});

// Available on all peers within ~1ms

QUIC Configuration

const adapter = await createAgentDBAdapter({
  enableQUICSync: true,
  syncPort: 4433,              // QUIC server port
  syncPeers: ['host1:4433'],   // Peer addresses
  syncInterval: 1000,          // Sync interval (ms)
  syncBatchSize: 100,          // Patterns per batch
  maxRetries: 3,               // Retry failed syncs
  compression: true,           // Enable compression
});

Multi-Node Deployment

# Node 1 (192.168.1.10)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.11:4433,192.168.1.12:4433 \
node server.js

# Node 2 (192.168.1.11)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.12:4433 \
node server.js

# Node 3 (192.168.1.12)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.11:4433 \
node server.js

Distance Metrics

Cosine Similarity (Default)

Best for normalized vectors, semantic similarity:

# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m cosine

# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  metric: 'cosine',
  k: 10,
});

Use Cases:

  • Text embeddings (BERT, GPT, etc.)
  • Semantic search
  • Document similarity
  • Most general-purpose applications

Formula: cos(θ) = (A · B) / (||A|| × ||B||) Range: [-1, 1] (1 = identical, -1 = opposite)

Euclidean Distance (L2)

Best for spatial data, geometric similarity:

# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m euclidean

# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  metric: 'euclidean',
  k: 10,
});

Use Cases:

  • Image embeddings
  • Spatial data
  • Computer vision
  • When vector magnitude matters

Formula: d = √(Σ(ai - bi)²) Range: [0, ∞] (0 = identical, ∞ = very different)

Dot Product

Best for pre-normalized vectors, fast computation:

# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m dot

# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  metric: 'dot',
  k: 10,
});

Use Cases:

  • Pre-normalized embeddings
  • Fast similarity computation
  • When vectors are already unit-length

Formula: dot = Σ(ai × bi) Range: [-∞, ∞] (higher = more similar)

Custom Distance Metrics

// Implement custom distance function
function customDistance(vec1: number[], vec2: number[]): number {
  // Weighted Euclidean distance
  const weights = [1.0, 2.0, 1.5, ...];
  let sum = 0;
  for (let i = 0; i < vec1.length; i++) {
    sum += weights[i] * Math.pow(vec1[i] - vec2[i], 2);
  }
  return Math.sqrt(sum);
}

// Use in search (requires custom implementation)

Hybrid Search (Vector + Metadata)

Basic Hybrid Search

Combine vector similarity with metadata filtering:

// Store documents with metadata
await adapter.insertPattern({
  id: '',
  type: 'document',
  domain: 'research-papers',
  pattern_data: JSON.stringify({
    embedding: documentEmbedding,
    text: documentText,
    metadata: {
      author: 'Jane Smith',
      year: 2025,
      category: 'machine-learning',
      citations: 150,
    }
  }),
  confidence: 1.0,
  usage_count: 0,
  success_count: 0,
  created_at: Date.now(),
  last_used: Date.now(),
});

// Hybrid search: vector similarity + metadata filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'research-papers',
  k: 20,
  filters: {
    year: { $gte: 2023 },          // Published 2023 or later
    category: 'machine-learning',   // ML papers only
    citations: { $gte: 50 },       // Highly cited
  },
});

Advanced Filtering

// Complex metadata queries
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'products',
  k: 50,
  filters: {
    price: { $gte: 10, $lte: 100 },      // Price range
    category: { $in: ['electronics', 'gadgets'] },  // Multiple categories
    rating: { $gte: 4.0 },                // High rated
    inStock: true,                        // Available
    tags: { $contains: 'wireless' },      // Has tag
  },
});

Weighted Hybrid Search

Combine vector and metadata scores:

const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'content',
  k: 20,
  hybridWeights: {
    vectorSimilarity: 0.7,  // 70% weight on semantic similarity
    metadataScore: 0.3,     // 30% weight on metadata match
  },
  filters: {
    category: 'technology',
    recency: { $gte: Date.now() - 30 * 24 * 3600000 },  // Last 30 days
  },
});

Multi-Database Management

Multiple Databases

// Separate databases for different domains
const knowledgeDB = await createAgentDBAdapter({
  dbPath: '.agentdb/knowledge.db',
});

const conversationDB = await createAgentDBAdapter({
  dbPath: '.agentdb/conversations.db',
});

const codeDB = await createAgentDBAdapter({
  dbPath: '.agentdb/code.db',
});

// Use appropriate database for each task
await knowledgeDB.insertPattern({ /* knowledge */ });
await conversationDB.insertPattern({ /* conversation */ });
await codeDB.insertPattern({ /* code */ });

Database Sharding

// Shard by domain for horizontal scaling
const shards = {
  'domain-a': await createAgentDBAdapter({ dbPath: '.agentdb/shard-a.db' }),
  'domain-b': await createAgentDBAdapter({ dbPath: '.agentdb/shard-b.db' }),
  'domain-c': await createAgentDBAdapter({ dbPath: '.agentdb/shard-c.db' }),
};

// Route queries to appropriate shard
function getDBForDomain(domain: string) {
  const shardKey = domain.split('-')[0];  // Extract shard key
  return shards[shardKey] || shards['domain-a'];
}

// Insert to correct shard
const db = getDBForDomain('domain-a-task');
await db.insertPattern({ /* ... */ });

MMR (Maximal Marginal Relevance)

Retrieve diverse results to avoid redundancy:

// Without MMR: Similar results may be redundant
const standardResults = await adapter.retrieveWithReasoning(queryEmbedding, {
  k: 10,
  useMMR: false,
});

// With MMR: Diverse, non-redundant results
const diverseResults = await adapter.retrieveWithReasoning(queryEmbedding, {
  k: 10,
  useMMR: true,
  mmrLambda: 0.5,  // Balance relevance (0) vs diversity (1)
});

MMR Parameters:

  • mmrLambda = 0: Maximum relevance (may be redundant)
  • mmrLambda = 0.5: Balanced (default)
  • mmrLambda = 1: Maximum diversity (may be less relevant)

Use Cases:

  • Search result diversification
  • Recommendation systems
  • Avoiding echo chambers
  • Exploratory search

Context Synthesis

Generate rich context from multiple memories:

const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  domain: 'problem-solving',
  k: 10,
  synthesizeContext: true,  // Enable context synthesis
});

// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 10 similar problem-solving attempts, the most effective
//  approach involves: 1) analyzing root cause, 2) brainstorming solutions,
//  3) evaluating trade-offs, 4) implementing incrementally. Success rate: 85%"

console.log('Patterns:', result.patterns);
// Extracted common patterns across memories

Production Patterns

Connection Pooling

// Singleton pattern for shared adapter
class AgentDBPool {
  private static instance: AgentDBAdapter;

  static async getInstance() {
    if (!this.instance) {
      this.instance = await createAgentDBAdapter({
        dbPath: '.agentdb/production.db',
        quantizationType: 'scalar',
        cacheSize: 2000,
      });
    }
    return this.instance;
  }
}

// Use in application
const db = await AgentDBPool.getInstance();
const results = await db.retrieveWithReasoning(queryEmbedding, { k: 10 });

Error Handling

async function safeRetrieve(queryEmbedding: number[], options: any) {
  try {
    const result = await adapter.retrieveWithReasoning(queryEmbedding, options);
    return result;
  } catch (error) {
    if (error.code === 'DIMENSION_MISMATCH') {
      console.error('Query embedding dimension mismatch');
      // Handle dimension error
    } else if (error.code === 'DATABASE_LOCKED') {
      // Retry with exponential backoff
      await new Promise(resolve => setTimeout(resolve, 100));
      return safeRetrieve(queryEmbedding, options);
    }
    throw error;
  }
}

Monitoring and Logging

// Performance monitoring
const startTime = Date.now();
const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10 });
const latency = Date.now() - startTime;

if (latency > 100) {
  console.warn('Slow query detected:', latency, 'ms');
}

// Log statistics
const stats = await adapter.getStats();
console.log('Database Stats:', {
  totalPatterns: stats.totalPatterns,
  dbSize: stats.dbSize,
  cacheHitRate: stats.cacheHitRate,
  avgSearchLatency: stats.avgSearchLatency,
});

CLI Advanced Operations

Database Import/Export

# Export with compression
npx agentdb@latest export ./vectors.db ./backup.json.gz --compress

# Import from backup
npx agentdb@latest import ./backup.json.gz --decompress

# Merge databases
npx agentdb@latest merge ./db1.sqlite ./db2.sqlite ./merged.sqlite

Database Optimization

# Vacuum database (reclaim space)
sqlite3 .agentdb/vectors.db "VACUUM;"

# Analyze for query optimization
sqlite3 .agentdb/vectors.db "ANALYZE;"

# Rebuild indices
npx agentdb@latest reindex ./vectors.db

Environment Variables

# AgentDB configuration
AGENTDB_PATH=.agentdb/reasoningbank.db
AGENTDB_ENABLED=true

# Performance tuning
AGENTDB_QUANTIZATION=binary     # binary|scalar|product|none
AGENTDB_CACHE_SIZE=2000
AGENTDB_HNSW_M=16
AGENTDB_HNSW_EF=100

# Learning plugins
AGENTDB_LEARNING=true

# Reasoning agents
AGENTDB_REASONING=true

# QUIC synchronization
AGENTDB_QUIC_SYNC=true
AGENTDB_QUIC_PORT=4433
AGENTDB_QUIC_PEERS=host1:4433,host2:4433

Troubleshooting

Issue: QUIC sync not working

# Check firewall allows UDP port 4433
sudo ufw allow 4433/udp

# Verify peers are reachable
ping host1

# Check QUIC logs
DEBUG=agentdb:quic node server.js

Issue: Hybrid search returns no results

// Relax filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  k: 100,  // Increase k
  filters: {
    // Remove or relax filters
  },
});

Issue: Memory consolidation too aggressive

// Disable automatic optimization
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
  optimizeMemory: false,  // Disable auto-consolidation
  k: 10,
});

Learn More


Category: Advanced / Distributed Systems Difficulty: Advanced Estimated Time: 45-60 minutes

Quick Install

/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/agentdb-advanced

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

DNYoussef/ai-chrome-extension
Path: .claude/skills/agentdb-advanced

Related Skills

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill