AgentDB Advanced Features
About
This skill teaches advanced AgentDB features for building distributed AI systems and multi-agent coordination. It covers QUIC synchronization for sub-millisecond cross-node communication, multi-database management, and hybrid search with custom distance metrics. Use it when developing applications requiring sophisticated vector search or distributed system integration.
Documentation
AgentDB Advanced Features
What This Skill Does
Covers advanced AgentDB capabilities for distributed systems, multi-database coordination, custom distance metrics, hybrid search (vector + metadata), QUIC synchronization, and production deployment patterns. Enables building sophisticated AI systems with sub-millisecond cross-node communication and advanced search capabilities.
Performance: <1ms QUIC sync, hybrid search with filters, custom distance metrics.
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow)
- Understanding of distributed systems (for QUIC sync)
- Vector search fundamentals
QUIC Synchronization
What is QUIC Sync?
QUIC (Quick UDP Internet Connections) enables sub-millisecond latency synchronization between AgentDB instances across network boundaries with automatic retry, multiplexing, and encryption.
Benefits:
- <1ms latency between nodes
- Multiplexed streams (multiple operations simultaneously)
- Built-in encryption (TLS 1.3)
- Automatic retry and recovery
- Event-based broadcasting
Enable QUIC Sync
import { createAgentDBAdapter } from 'agentic-flow/reasoningbank';
// Initialize with QUIC synchronization
const adapter = await createAgentDBAdapter({
dbPath: '.agentdb/distributed.db',
enableQUICSync: true,
syncPort: 4433,
syncPeers: [
'192.168.1.10:4433',
'192.168.1.11:4433',
'192.168.1.12:4433',
],
});
// Patterns automatically sync across all peers
await adapter.insertPattern({
// ... pattern data
});
// Available on all peers within ~1ms
QUIC Configuration
const adapter = await createAgentDBAdapter({
enableQUICSync: true,
syncPort: 4433, // QUIC server port
syncPeers: ['host1:4433'], // Peer addresses
syncInterval: 1000, // Sync interval (ms)
syncBatchSize: 100, // Patterns per batch
maxRetries: 3, // Retry failed syncs
compression: true, // Enable compression
});
Multi-Node Deployment
# Node 1 (192.168.1.10)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.11:4433,192.168.1.12:4433 \
node server.js
# Node 2 (192.168.1.11)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.12:4433 \
node server.js
# Node 3 (192.168.1.12)
AGENTDB_QUIC_SYNC=true \
AGENTDB_QUIC_PORT=4433 \
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.11:4433 \
node server.js
Distance Metrics
Cosine Similarity (Default)
Best for normalized vectors, semantic similarity:
# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m cosine
# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
metric: 'cosine',
k: 10,
});
Use Cases:
- Text embeddings (BERT, GPT, etc.)
- Semantic search
- Document similarity
- Most general-purpose applications
Formula: cos(θ) = (A · B) / (||A|| × ||B||)
Range: [-1, 1] (1 = identical, -1 = opposite)
Euclidean Distance (L2)
Best for spatial data, geometric similarity:
# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m euclidean
# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
metric: 'euclidean',
k: 10,
});
Use Cases:
- Image embeddings
- Spatial data
- Computer vision
- When vector magnitude matters
Formula: d = √(Σ(ai - bi)²)
Range: [0, ∞] (0 = identical, ∞ = very different)
Dot Product
Best for pre-normalized vectors, fast computation:
# CLI
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m dot
# API
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
metric: 'dot',
k: 10,
});
Use Cases:
- Pre-normalized embeddings
- Fast similarity computation
- When vectors are already unit-length
Formula: dot = Σ(ai × bi)
Range: [-∞, ∞] (higher = more similar)
Custom Distance Metrics
// Implement custom distance function
function customDistance(vec1: number[], vec2: number[]): number {
// Weighted Euclidean distance
const weights = [1.0, 2.0, 1.5, ...];
let sum = 0;
for (let i = 0; i < vec1.length; i++) {
sum += weights[i] * Math.pow(vec1[i] - vec2[i], 2);
}
return Math.sqrt(sum);
}
// Use in search (requires custom implementation)
Hybrid Search (Vector + Metadata)
Basic Hybrid Search
Combine vector similarity with metadata filtering:
// Store documents with metadata
await adapter.insertPattern({
id: '',
type: 'document',
domain: 'research-papers',
pattern_data: JSON.stringify({
embedding: documentEmbedding,
text: documentText,
metadata: {
author: 'Jane Smith',
year: 2025,
category: 'machine-learning',
citations: 150,
}
}),
confidence: 1.0,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
// Hybrid search: vector similarity + metadata filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'research-papers',
k: 20,
filters: {
year: { $gte: 2023 }, // Published 2023 or later
category: 'machine-learning', // ML papers only
citations: { $gte: 50 }, // Highly cited
},
});
Advanced Filtering
// Complex metadata queries
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'products',
k: 50,
filters: {
price: { $gte: 10, $lte: 100 }, // Price range
category: { $in: ['electronics', 'gadgets'] }, // Multiple categories
rating: { $gte: 4.0 }, // High rated
inStock: true, // Available
tags: { $contains: 'wireless' }, // Has tag
},
});
Weighted Hybrid Search
Combine vector and metadata scores:
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'content',
k: 20,
hybridWeights: {
vectorSimilarity: 0.7, // 70% weight on semantic similarity
metadataScore: 0.3, // 30% weight on metadata match
},
filters: {
category: 'technology',
recency: { $gte: Date.now() - 30 * 24 * 3600000 }, // Last 30 days
},
});
Multi-Database Management
Multiple Databases
// Separate databases for different domains
const knowledgeDB = await createAgentDBAdapter({
dbPath: '.agentdb/knowledge.db',
});
const conversationDB = await createAgentDBAdapter({
dbPath: '.agentdb/conversations.db',
});
const codeDB = await createAgentDBAdapter({
dbPath: '.agentdb/code.db',
});
// Use appropriate database for each task
await knowledgeDB.insertPattern({ /* knowledge */ });
await conversationDB.insertPattern({ /* conversation */ });
await codeDB.insertPattern({ /* code */ });
Database Sharding
// Shard by domain for horizontal scaling
const shards = {
'domain-a': await createAgentDBAdapter({ dbPath: '.agentdb/shard-a.db' }),
'domain-b': await createAgentDBAdapter({ dbPath: '.agentdb/shard-b.db' }),
'domain-c': await createAgentDBAdapter({ dbPath: '.agentdb/shard-c.db' }),
};
// Route queries to appropriate shard
function getDBForDomain(domain: string) {
const shardKey = domain.split('-')[0]; // Extract shard key
return shards[shardKey] || shards['domain-a'];
}
// Insert to correct shard
const db = getDBForDomain('domain-a-task');
await db.insertPattern({ /* ... */ });
MMR (Maximal Marginal Relevance)
Retrieve diverse results to avoid redundancy:
// Without MMR: Similar results may be redundant
const standardResults = await adapter.retrieveWithReasoning(queryEmbedding, {
k: 10,
useMMR: false,
});
// With MMR: Diverse, non-redundant results
const diverseResults = await adapter.retrieveWithReasoning(queryEmbedding, {
k: 10,
useMMR: true,
mmrLambda: 0.5, // Balance relevance (0) vs diversity (1)
});
MMR Parameters:
mmrLambda = 0: Maximum relevance (may be redundant)mmrLambda = 0.5: Balanced (default)mmrLambda = 1: Maximum diversity (may be less relevant)
Use Cases:
- Search result diversification
- Recommendation systems
- Avoiding echo chambers
- Exploratory search
Context Synthesis
Generate rich context from multiple memories:
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'problem-solving',
k: 10,
synthesizeContext: true, // Enable context synthesis
});
// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 10 similar problem-solving attempts, the most effective
// approach involves: 1) analyzing root cause, 2) brainstorming solutions,
// 3) evaluating trade-offs, 4) implementing incrementally. Success rate: 85%"
console.log('Patterns:', result.patterns);
// Extracted common patterns across memories
Production Patterns
Connection Pooling
// Singleton pattern for shared adapter
class AgentDBPool {
private static instance: AgentDBAdapter;
static async getInstance() {
if (!this.instance) {
this.instance = await createAgentDBAdapter({
dbPath: '.agentdb/production.db',
quantizationType: 'scalar',
cacheSize: 2000,
});
}
return this.instance;
}
}
// Use in application
const db = await AgentDBPool.getInstance();
const results = await db.retrieveWithReasoning(queryEmbedding, { k: 10 });
Error Handling
async function safeRetrieve(queryEmbedding: number[], options: any) {
try {
const result = await adapter.retrieveWithReasoning(queryEmbedding, options);
return result;
} catch (error) {
if (error.code === 'DIMENSION_MISMATCH') {
console.error('Query embedding dimension mismatch');
// Handle dimension error
} else if (error.code === 'DATABASE_LOCKED') {
// Retry with exponential backoff
await new Promise(resolve => setTimeout(resolve, 100));
return safeRetrieve(queryEmbedding, options);
}
throw error;
}
}
Monitoring and Logging
// Performance monitoring
const startTime = Date.now();
const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10 });
const latency = Date.now() - startTime;
if (latency > 100) {
console.warn('Slow query detected:', latency, 'ms');
}
// Log statistics
const stats = await adapter.getStats();
console.log('Database Stats:', {
totalPatterns: stats.totalPatterns,
dbSize: stats.dbSize,
cacheHitRate: stats.cacheHitRate,
avgSearchLatency: stats.avgSearchLatency,
});
CLI Advanced Operations
Database Import/Export
# Export with compression
npx agentdb@latest export ./vectors.db ./backup.json.gz --compress
# Import from backup
npx agentdb@latest import ./backup.json.gz --decompress
# Merge databases
npx agentdb@latest merge ./db1.sqlite ./db2.sqlite ./merged.sqlite
Database Optimization
# Vacuum database (reclaim space)
sqlite3 .agentdb/vectors.db "VACUUM;"
# Analyze for query optimization
sqlite3 .agentdb/vectors.db "ANALYZE;"
# Rebuild indices
npx agentdb@latest reindex ./vectors.db
Environment Variables
# AgentDB configuration
AGENTDB_PATH=.agentdb/reasoningbank.db
AGENTDB_ENABLED=true
# Performance tuning
AGENTDB_QUANTIZATION=binary # binary|scalar|product|none
AGENTDB_CACHE_SIZE=2000
AGENTDB_HNSW_M=16
AGENTDB_HNSW_EF=100
# Learning plugins
AGENTDB_LEARNING=true
# Reasoning agents
AGENTDB_REASONING=true
# QUIC synchronization
AGENTDB_QUIC_SYNC=true
AGENTDB_QUIC_PORT=4433
AGENTDB_QUIC_PEERS=host1:4433,host2:4433
Troubleshooting
Issue: QUIC sync not working
# Check firewall allows UDP port 4433
sudo ufw allow 4433/udp
# Verify peers are reachable
ping host1
# Check QUIC logs
DEBUG=agentdb:quic node server.js
Issue: Hybrid search returns no results
// Relax filters
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
k: 100, // Increase k
filters: {
// Remove or relax filters
},
});
Issue: Memory consolidation too aggressive
// Disable automatic optimization
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
optimizeMemory: false, // Disable auto-consolidation
k: 10,
});
Learn More
- QUIC Protocol: docs/quic-synchronization.pdf
- Hybrid Search: docs/hybrid-search-guide.md
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- Website: https://agentdb.ruv.io
Category: Advanced / Distributed Systems Difficulty: Advanced Estimated Time: 45-60 minutes
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/agentdb-advancedCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
