constant-time-analysis
About
This skill detects timing side-channel vulnerabilities in cryptographic code across multiple languages. Use it when implementing or reviewing crypto operations, especially when encountering secret-dependent branches or division operations on secret values. It helps identify operations that could leak secret data through execution timing variations.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/constant-time-analysisCopy and paste this command in Claude Code to install this skill
Documentation
Constant-Time Analysis
Analyze cryptographic code to detect operations that leak secret data through execution timing variations.
When to Use
User writing crypto code? ──yes──> Use this skill
│
no
│
v
User asking about timing attacks? ──yes──> Use this skill
│
no
│
v
Code handles secret keys/tokens? ──yes──> Use this skill
│
no
│
v
Skip this skill
Concrete triggers:
- User implements signature, encryption, or key derivation
- Code contains
/or%operators on secret-derived values - User mentions "constant-time", "timing attack", "side-channel", "KyberSlash"
- Reviewing functions named
sign,verify,encrypt,decrypt,derive_key
When NOT to Use
- Non-cryptographic code (business logic, UI, etc.)
- Public data processing where timing leaks don't matter
- Code that doesn't handle secrets, keys, or authentication tokens
- High-level API usage where timing is handled by the library
Language Selection
Based on the file extension or language context, refer to the appropriate guide:
| Language | File Extensions | Guide |
|---|---|---|
| C, C++ | .c, .h, .cpp, .cc, .hpp | references/compiled.md |
| Go | .go | references/compiled.md |
| Rust | .rs | references/compiled.md |
| Swift | .swift | references/swift.md |
| Java | .java | references/vm-compiled.md |
| Kotlin | .kt, .kts | references/kotlin.md |
| C# | .cs | references/vm-compiled.md |
| PHP | .php | references/php.md |
| JavaScript | .js, .mjs, .cjs | references/javascript.md |
| TypeScript | .ts, .tsx | references/javascript.md |
| Python | .py | references/python.md |
| Ruby | .rb | references/ruby.md |
Quick Start
# Analyze any supported file type
uv run {baseDir}/ct_analyzer/analyzer.py <source_file>
# Include conditional branch warnings
uv run {baseDir}/ct_analyzer/analyzer.py --warnings <source_file>
# Filter to specific functions
uv run {baseDir}/ct_analyzer/analyzer.py --func 'sign|verify' <source_file>
# JSON output for CI
uv run {baseDir}/ct_analyzer/analyzer.py --json <source_file>
Native Compiled Languages Only (C, C++, Go, Rust)
# Cross-architecture testing (RECOMMENDED)
uv run {baseDir}/ct_analyzer/analyzer.py --arch x86_64 crypto.c
uv run {baseDir}/ct_analyzer/analyzer.py --arch arm64 crypto.c
# Multiple optimization levels
uv run {baseDir}/ct_analyzer/analyzer.py --opt-level O0 crypto.c
uv run {baseDir}/ct_analyzer/analyzer.py --opt-level O3 crypto.c
VM-Compiled Languages (Java, Kotlin, C#)
# Analyze Java bytecode
uv run {baseDir}/ct_analyzer/analyzer.py CryptoUtils.java
# Analyze Kotlin bytecode (Android/JVM)
uv run {baseDir}/ct_analyzer/analyzer.py CryptoUtils.kt
# Analyze C# IL
uv run {baseDir}/ct_analyzer/analyzer.py CryptoUtils.cs
Note: Java, Kotlin, and C# compile to bytecode (JVM/CIL) that runs on a virtual machine with JIT compilation. The analyzer examines the bytecode directly, not the JIT-compiled native code. The --arch and --opt-level flags do not apply to these languages.
Swift (iOS/macOS)
# Analyze Swift for native architecture
uv run {baseDir}/ct_analyzer/analyzer.py crypto.swift
# Analyze for specific architecture (iOS devices)
uv run {baseDir}/ct_analyzer/analyzer.py --arch arm64 crypto.swift
# Analyze with different optimization levels
uv run {baseDir}/ct_analyzer/analyzer.py --opt-level O0 crypto.swift
Note: Swift compiles to native code like C/C++/Go/Rust, so it uses assembly-level analysis and supports --arch and --opt-level flags.
Prerequisites
| Language | Requirements |
|---|---|
| C, C++, Go, Rust | Compiler in PATH (gcc/clang, go, rustc) |
| Swift | Xcode or Swift toolchain (swiftc in PATH) |
| Java | JDK with javac and javap in PATH |
| Kotlin | Kotlin compiler (kotlinc) + JDK (javap) in PATH |
| C# | .NET SDK + ilspycmd (dotnet tool install -g ilspycmd) |
| PHP | PHP with VLD extension or OPcache |
| JavaScript/TypeScript | Node.js in PATH |
| Python | Python 3.x in PATH |
| Ruby | Ruby with --dump=insns support |
macOS users: Homebrew installs Java and .NET as "keg-only". You must add them to your PATH:
# For Java (add to ~/.zshrc)
export PATH="/opt/homebrew/opt/openjdk@21/bin:$PATH"
# For .NET tools (add to ~/.zshrc)
export PATH="$HOME/.dotnet/tools:$PATH"
See references/vm-compiled.md for detailed setup instructions and troubleshooting.
Quick Reference
| Problem | Detection | Fix |
|---|---|---|
| Division on secrets | DIV, IDIV, SDIV, UDIV | Barrett reduction or multiply-by-inverse |
| Branch on secrets | JE, JNE, BEQ, BNE | Constant-time selection (cmov, bit masking) |
| Secret comparison | Early-exit memcmp | Use crypto/subtle or constant-time compare |
| Weak RNG | rand(), mt_rand, Math.random | Use crypto-secure RNG |
| Table lookup by secret | Array subscript on secret index | Bit-sliced lookups |
Interpreting Results
PASSED - No variable-time operations detected.
FAILED - Dangerous instructions found. Example:
[ERROR] SDIV
Function: decompose_vulnerable
Reason: SDIV has early termination optimization; execution time depends on operand values
Verifying Results (Avoiding False Positives)
CRITICAL: Not every flagged operation is a vulnerability. The tool has no data flow analysis - it flags ALL potentially dangerous operations regardless of whether they involve secrets.
For each flagged violation, ask: Does this operation's input depend on secret data?
-
Identify the secret inputs to the function (private keys, plaintext, signatures, tokens)
-
Trace data flow from the flagged instruction back to inputs
-
Common false positive patterns:
// FALSE POSITIVE: Division uses public constant, not secret int num_blocks = data_len / 16; // data_len is length, not content // TRUE POSITIVE: Division involves secret-derived value int32_t q = secret_coef / GAMMA2; // secret_coef from private key -
Document your analysis for each flagged item
Quick Triage Questions
| Question | If Yes | If No |
|---|---|---|
| Is the operand a compile-time constant? | Likely false positive | Continue |
| Is the operand a public parameter (length, count)? | Likely false positive | Continue |
| Is the operand derived from key/plaintext/secret? | TRUE POSITIVE | Likely false positive |
| Can an attacker influence the operand value? | TRUE POSITIVE | Likely false positive |
Limitations
-
Static Analysis Only: Analyzes assembly/bytecode, not runtime behavior. Cannot detect cache timing or microarchitectural side-channels.
-
No Data Flow Analysis: Flags all dangerous operations regardless of whether they process secrets. Manual review required.
-
Compiler/Runtime Variations: Different compilers, optimization levels, and runtime versions may produce different output.
Real-World Impact
- KyberSlash (2023): Division instructions in post-quantum ML-KEM implementations allowed key recovery
- Lucky Thirteen (2013): Timing differences in CBC padding validation enabled plaintext recovery
- RSA Timing Attacks: Early implementations leaked private key bits through division timing
References
- Cryptocoding Guidelines - Defensive coding for crypto
- KyberSlash - Division timing in post-quantum crypto
- BearSSL Constant-Time - Practical constant-time techniques
GitHub Repository
Related Skills
algorithmic-art
MetaThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
DevelopmentThis skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
DesignUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
OtherThis Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
