dispatching-parallel-agents
About
This skill dispatches multiple Claude agents to investigate and fix 3+ independent failures concurrently. It is designed for scenarios where problems have no shared state or dependencies, allowing parallel investigation. Each agent handles a separate problem domain, optimizing for speed when issues can be solved in isolation.
Documentation
Dispatching Parallel Agents
Overview
When you have multiple unrelated failures (different test files, different subsystems, different bugs), investigating them sequentially wastes time. Each investigation is independent and can happen in parallel.
Core principle: Dispatch one agent per independent problem domain. Let them work concurrently.
When to Use
digraph when_to_use {
"Multiple failures?" [shape=diamond];
"Are they independent?" [shape=diamond];
"Single agent investigates all" [shape=box];
"One agent per problem domain" [shape=box];
"Can they work in parallel?" [shape=diamond];
"Sequential agents" [shape=box];
"Parallel dispatch" [shape=box];
"Multiple failures?" -> "Are they independent?" [label="yes"];
"Are they independent?" -> "Single agent investigates all" [label="no - related"];
"Are they independent?" -> "Can they work in parallel?" [label="yes"];
"Can they work in parallel?" -> "Parallel dispatch" [label="yes"];
"Can they work in parallel?" -> "Sequential agents" [label="no - shared state"];
}
Use when:
- 3+ test files failing with different root causes
- Multiple subsystems broken independently
- Each problem can be understood without context from others
- No shared state between investigations
Don't use when:
- Failures are related (fix one might fix others)
- Need to understand full system state
- Agents would interfere with each other
The Pattern
1. Identify Independent Domains
Group failures by what's broken:
- File A tests: Tool approval flow
- File B tests: Batch completion behavior
- File C tests: Abort functionality
Each domain is independent - fixing tool approval doesn't affect abort tests.
2. Create Focused Agent Tasks
Each agent gets:
- Specific scope: One test file or subsystem
- Clear goal: Make these tests pass
- Constraints: Don't change other code
- Expected output: Summary of what you found and fixed
3. Dispatch in Parallel
// In Claude Code / AI environment
Task("Fix agent-tool-abort.test.ts failures")
Task("Fix batch-completion-behavior.test.ts failures")
Task("Fix tool-approval-race-conditions.test.ts failures")
// All three run concurrently
4. Review and Integrate
When agents return:
- Read each summary
- Verify fixes don't conflict
- Run full test suite
- Integrate all changes
Agent Prompt Structure
Good agent prompts are:
- Focused - One clear problem domain
- Self-contained - All context needed to understand the problem
- Specific about output - What should the agent return?
Fix the 3 failing tests in src/agents/agent-tool-abort.test.ts:
1. "should abort tool with partial output capture" - expects 'interrupted at' in message
2. "should handle mixed completed and aborted tools" - fast tool aborted instead of completed
3. "should properly track pendingToolCount" - expects 3 results but gets 0
These are timing/race condition issues. Your task:
1. Read the test file and understand what each test verifies
2. Identify root cause - timing issues or actual bugs?
3. Fix by:
- Replacing arbitrary timeouts with event-based waiting
- Fixing bugs in abort implementation if found
- Adjusting test expectations if testing changed behavior
Do NOT just increase timeouts - find the real issue.
Return: Summary of what you found and what you fixed.
Common Mistakes
❌ Too broad: "Fix all the tests" - agent gets lost ✅ Specific: "Fix agent-tool-abort.test.ts" - focused scope
❌ No context: "Fix the race condition" - agent doesn't know where ✅ Context: Paste the error messages and test names
❌ No constraints: Agent might refactor everything ✅ Constraints: "Do NOT change production code" or "Fix tests only"
❌ Vague output: "Fix it" - you don't know what changed ✅ Specific: "Return summary of root cause and changes"
When NOT to Use
Related failures: Fixing one might fix others - investigate together first Need full context: Understanding requires seeing entire system Exploratory debugging: You don't know what's broken yet Shared state: Agents would interfere (editing same files, using same resources)
Real Example from Session
Scenario: 6 test failures across 3 files after major refactoring
Failures:
- agent-tool-abort.test.ts: 3 failures (timing issues)
- batch-completion-behavior.test.ts: 2 failures (tools not executing)
- tool-approval-race-conditions.test.ts: 1 failure (execution count = 0)
Decision: Independent domains - abort logic separate from batch completion separate from race conditions
Dispatch:
Agent 1 → Fix agent-tool-abort.test.ts
Agent 2 → Fix batch-completion-behavior.test.ts
Agent 3 → Fix tool-approval-race-conditions.test.ts
Results:
- Agent 1: Replaced timeouts with event-based waiting
- Agent 2: Fixed event structure bug (threadId in wrong place)
- Agent 3: Added wait for async tool execution to complete
Integration: All fixes independent, no conflicts, full suite green
Time saved: 3 problems solved in parallel vs sequentially
Key Benefits
- Parallelization - Multiple investigations happen simultaneously
- Focus - Each agent has narrow scope, less context to track
- Independence - Agents don't interfere with each other
- Speed - 3 problems solved in time of 1
Verification
After agents return:
- Review each summary - Understand what changed
- Check for conflicts - Did agents edit same code?
- Run full suite - Verify all fixes work together
- Spot check - Agents can make systematic errors
Real-World Impact
From debugging session (2025-10-03):
- 6 failures across 3 files
- 3 agents dispatched in parallel
- All investigations completed concurrently
- All fixes integrated successfully
- Zero conflicts between agent changes
Quick Install
/plugin add https://github.com/LerianStudio/ring/tree/main/dispatching-parallel-agentsCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
