Back to Skills

case-study-writer

chat-prompt
Updated 2 days ago
50 views
0
View on GitHub
Documentationai

About

The case-study-writer skill helps developers create structured blog posts to share AI/automation project results internally. It interactively collects project details (problem, solution, results) and generates formatted case studies in markdown. Use this skill after completing a project to document and communicate its impact in a consistent, company-appropriate format.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/chat-prompt/gpters-ai-toolkit
Git CloneAlternative
git clone https://github.com/chat-prompt/gpters-ai-toolkit.git ~/.claude/skills/case-study-writer

Copy and paste this command in Claude Code to install this skill

Documentation

사례 게시글 작성 스킬

목적

AI/자동화(AX) 프로젝트 완료 후 사내 공유를 위한 사례 게시글을 작성합니다.

동작 방식

  1. 프로젝트 정보 수집 (문제, 해결책, 결과)
  2. 구조화된 사례 게시글 작성
  3. 사내 톤앤매너에 맞게 정리

입력

사용자에게 다음 정보를 질문합니다:

  • 필수

    • 프로젝트명
    • 해결하려던 문제
    • 적용한 AI/자동화 방법
    • 결과 및 효과
  • 선택

    • 소요 시간
    • 사용한 도구/기술
    • 배운 점/팁

출력 형식

# [프로젝트명] 사례 공유

## 배경
기존에 어떤 문제가 있었는지...

## 해결 방법
어떤 AI/자동화를 적용했는지...

## 결과
적용 후 어떤 효과가 있었는지...

## 배운 점
다른 분들께 공유하고 싶은 팁...

워크플로우

  1. /case-study-writer 실행
  2. 대화형으로 정보 수집
  3. 초안 작성 및 검토
  4. 수정 요청 반영
  5. 최종 게시글 완성

예시 대화

사용자: /case-study-writer

AI: 사례 게시글을 작성해드리겠습니다. 몇 가지 질문드릴게요.

1. 프로젝트명이 무엇인가요?
> 주간보고 자동화

2. 기존에 어떤 문제가 있었나요?
> 매주 각 팀의 보고를 취합하는데 2시간씩 걸렸어요

3. 어떤 AI/자동화를 적용했나요?
> Claude로 슬랙 메시지를 자동 요약하는 스킬 만들었어요

4. 결과가 어땠나요?
> 2시간 -> 10분으로 단축됐어요

[초안 작성...]

GitHub Repository

chat-prompt/gpters-ai-toolkit
Path: web/skills/case-study-writer

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

cloudflare-turnstile

Meta

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

View skill