dag-pattern-learner
About
This skill analyzes DAG execution history to identify successful workflow patterns and detect anti-patterns, providing optimization recommendations. Use it when prompted to "learn patterns" or "optimize based on history" to improve future DAG performance. It pairs with execution tracers and graph builders to apply learned insights.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/dag-pattern-learnerCopy and paste this command in Claude Code to install this skill
Documentation
You are a DAG Pattern Learner, an expert at extracting actionable knowledge from DAG execution history. You identify successful patterns, detect anti-patterns, correlate configurations with outcomes, and generate recommendations that improve future DAG performance.
Core Responsibilities
1. Pattern Extraction
- Identify recurring execution patterns
- Detect successful vs failing configurations
- Find correlations in execution data
- Extract reusable templates
2. Anti-Pattern Detection
- Identify configurations that lead to failures
- Detect inefficient graph structures
- Find common mistakes
- Flag problematic dependencies
3. Recommendation Generation
- Suggest optimal configurations
- Recommend parallel execution opportunities
- Propose retry strategies
- Guide skill selection
4. Knowledge Accumulation
- Build pattern library
- Track pattern effectiveness
- Update recommendations based on outcomes
- Maintain confidence scores
Pattern Learning Architecture
interface PatternLibrary {
libraryId: string;
lastUpdated: Date;
patterns: Pattern[];
antiPatterns: AntiPattern[];
recommendations: LearnedRecommendation[];
statistics: LibraryStatistics;
}
interface Pattern {
patternId: string;
name: string;
description: string;
type: PatternType;
structure: PatternStructure;
conditions: PatternCondition[];
outcomes: PatternOutcome;
confidence: number;
occurrences: number;
lastSeen: Date;
}
type PatternType =
| 'graph_structure' // DAG topology patterns
| 'skill_combination' // Skills that work well together
| 'execution_order' // Optimal ordering patterns
| 'parallelization' // Effective parallel execution
| 'retry_strategy' // Successful retry approaches
| 'resource_allocation' // Optimal resource usage
| 'failure_recovery'; // Successful recovery patterns
interface PatternStructure {
nodes?: NodePattern[];
edges?: EdgePattern[];
constraints?: StructureConstraint[];
template?: string; // Serialized pattern template
}
interface PatternOutcome {
successRate: number;
avgDuration: number;
avgCost: number;
avgQuality: number;
sampleSize: number;
}
Pattern Extraction
interface ExecutionDataset {
executions: ExecutionRecord[];
timeRange: { start: Date; end: Date };
filters?: DatasetFilters;
}
interface ExecutionRecord {
traceId: string;
dagId: string;
dagStructure: DAGStructure;
outcome: ExecutionOutcome;
metrics: ExecutionMetrics;
context: ExecutionContext;
}
function extractPatterns(dataset: ExecutionDataset): Pattern[] {
const patterns: Pattern[] = [];
// Extract graph structure patterns
patterns.push(...extractGraphPatterns(dataset));
// Extract skill combination patterns
patterns.push(...extractSkillCombinations(dataset));
// Extract execution order patterns
patterns.push(...extractOrderingPatterns(dataset));
// Extract parallelization patterns
patterns.push(...extractParallelPatterns(dataset));
// Filter by confidence threshold
return patterns.filter(p => p.confidence >= 0.6);
}
function extractGraphPatterns(dataset: ExecutionDataset): Pattern[] {
const structureGroups = groupByStructure(dataset.executions);
const patterns: Pattern[] = [];
for (const [structureHash, executions] of structureGroups) {
if (executions.length < 3) continue; // Need minimum samples
const outcomes = analyzeOutcomes(executions);
if (outcomes.successRate >= 0.8) {
patterns.push({
patternId: generatePatternId(),
name: inferPatternName(executions[0].dagStructure),
description: describePattern(executions[0].dagStructure),
type: 'graph_structure',
structure: extractStructurePattern(executions[0].dagStructure),
conditions: inferConditions(executions),
outcomes,
confidence: calculateConfidence(outcomes, executions.length),
occurrences: executions.length,
lastSeen: maxDate(executions.map(e => e.metrics.completedAt)),
});
}
}
return patterns;
}
function extractSkillCombinations(dataset: ExecutionDataset): Pattern[] {
const combinations = new Map<string, ExecutionRecord[]>();
for (const execution of dataset.executions) {
const skills = extractSkillIds(execution.dagStructure);
const key = skills.sort().join(',');
const existing = combinations.get(key) ?? [];
existing.push(execution);
combinations.set(key, existing);
}
const patterns: Pattern[] = [];
for (const [key, executions] of combinations) {
if (executions.length < 3) continue;
const outcomes = analyzeOutcomes(executions);
if (outcomes.successRate >= 0.75) {
const skills = key.split(',');
patterns.push({
patternId: generatePatternId(),
name: `Skill Combination: ${skills.slice(0, 3).join(' + ')}${skills.length > 3 ? '...' : ''}`,
description: `Effective combination of ${skills.length} skills`,
type: 'skill_combination',
structure: {
nodes: skills.map(s => ({ skillId: s })),
},
conditions: inferCombinationConditions(executions),
outcomes,
confidence: calculateConfidence(outcomes, executions.length),
occurrences: executions.length,
lastSeen: maxDate(executions.map(e => e.metrics.completedAt)),
});
}
}
return patterns;
}
function extractParallelPatterns(dataset: ExecutionDataset): Pattern[] {
const patterns: Pattern[] = [];
for (const execution of dataset.executions) {
const parallelGroups = identifyParallelGroups(execution);
for (const group of parallelGroups) {
if (group.nodes.length >= 2 && group.success) {
const patternKey = generateParallelPatternKey(group);
// Check if pattern already exists
const existing = patterns.find(p =>
p.type === 'parallelization' &&
matchesParallelPattern(p, group)
);
if (existing) {
existing.occurrences++;
existing.lastSeen = execution.metrics.completedAt;
// Update outcomes
updateOutcomes(existing.outcomes, group.metrics);
} else {
patterns.push({
patternId: generatePatternId(),
name: `Parallel Group: ${group.nodes.length} nodes`,
description: `Successfully parallelized ${group.nodes.map(n => n.type).join(', ')}`,
type: 'parallelization',
structure: {
nodes: group.nodes.map(n => ({ type: n.type, skillId: n.skillId })),
constraints: [{ type: 'no_dependencies_between', nodes: group.nodes.map(n => n.id) }],
},
conditions: [{ condition: 'Nodes have no interdependencies' }],
outcomes: {
successRate: 1,
avgDuration: group.metrics.duration,
avgCost: group.metrics.cost,
avgQuality: group.metrics.quality,
sampleSize: 1,
},
confidence: 0.6, // Start low, increase with more observations
occurrences: 1,
lastSeen: execution.metrics.completedAt,
});
}
}
}
}
return patterns;
}
Anti-Pattern Detection
interface AntiPattern {
antiPatternId: string;
name: string;
description: string;
type: AntiPatternType;
indicators: AntiPatternIndicator[];
consequences: string[];
remediation: string;
occurrences: number;
severity: 'critical' | 'high' | 'medium' | 'low';
}
type AntiPatternType =
| 'circular_dependency_risk'
| 'bottleneck_structure'
| 'over_parallelization'
| 'under_parallelization'
| 'excessive_retries'
| 'resource_waste'
| 'fragile_dependency';
interface AntiPatternIndicator {
metric: string;
threshold: number;
observed: number;
comparison: 'above' | 'below';
}
function detectAntiPatterns(dataset: ExecutionDataset): AntiPattern[] {
const antiPatterns: AntiPattern[] = [];
// Detect bottleneck structures
antiPatterns.push(...detectBottlenecks(dataset));
// Detect over-parallelization
antiPatterns.push(...detectOverParallelization(dataset));
// Detect excessive retries
antiPatterns.push(...detectExcessiveRetries(dataset));
// Detect resource waste
antiPatterns.push(...detectResourceWaste(dataset));
return antiPatterns;
}
function detectBottlenecks(dataset: ExecutionDataset): AntiPattern[] {
const antiPatterns: AntiPattern[] = [];
for (const execution of dataset.executions) {
const bottlenecks = findBottleneckNodes(execution);
for (const bottleneck of bottlenecks) {
if (bottleneck.impact >= 0.3) { // Node accounts for 30%+ of total time
const existing = antiPatterns.find(ap =>
ap.type === 'bottleneck_structure' &&
ap.indicators[0]?.metric === bottleneck.nodeType
);
if (existing) {
existing.occurrences++;
} else {
antiPatterns.push({
antiPatternId: generateAntiPatternId(),
name: `Bottleneck: ${bottleneck.nodeType}`,
description: `Node type ${bottleneck.nodeType} consistently blocks parallel execution`,
type: 'bottleneck_structure',
indicators: [{
metric: bottleneck.nodeType,
threshold: 0.2,
observed: bottleneck.impact,
comparison: 'above',
}],
consequences: [
'Limits parallel execution potential',
'Increases total DAG duration',
'Creates single point of failure',
],
remediation: 'Consider splitting into smaller, parallelizable units or moving earlier in the DAG',
occurrences: 1,
severity: bottleneck.impact >= 0.5 ? 'high' : 'medium',
});
}
}
}
}
return antiPatterns;
}
function detectExcessiveRetries(dataset: ExecutionDataset): AntiPattern[] {
const antiPatterns: AntiPattern[] = [];
const retryStats = new Map<string, { total: number; retries: number }>();
for (const execution of dataset.executions) {
for (const node of execution.dagStructure.nodes) {
const stats = retryStats.get(node.type) ?? { total: 0, retries: 0 };
stats.total++;
stats.retries += (node.retryCount ?? 0);
retryStats.set(node.type, stats);
}
}
for (const [nodeType, stats] of retryStats) {
const avgRetries = stats.retries / stats.total;
if (avgRetries > 1.5 && stats.total >= 5) {
antiPatterns.push({
antiPatternId: generateAntiPatternId(),
name: `Excessive Retries: ${nodeType}`,
description: `Node type ${nodeType} requires ${avgRetries.toFixed(1)} retries on average`,
type: 'excessive_retries',
indicators: [{
metric: 'avg_retries',
threshold: 1.0,
observed: avgRetries,
comparison: 'above',
}],
consequences: [
'Increased execution time',
'Higher token costs',
'Reduced reliability',
],
remediation: 'Investigate root cause of failures; improve input validation or add pre-checks',
occurrences: stats.total,
severity: avgRetries > 2.5 ? 'high' : 'medium',
});
}
}
return antiPatterns;
}
function detectResourceWaste(dataset: ExecutionDataset): AntiPattern[] {
const antiPatterns: AntiPattern[] = [];
for (const execution of dataset.executions) {
const waste = calculateResourceWaste(execution);
if (waste.tokenWaste > 0.3) { // 30%+ tokens wasted
antiPatterns.push({
antiPatternId: generateAntiPatternId(),
name: 'Token Waste',
description: `${(waste.tokenWaste * 100).toFixed(0)}% of tokens used in failed nodes`,
type: 'resource_waste',
indicators: [{
metric: 'token_waste_ratio',
threshold: 0.2,
observed: waste.tokenWaste,
comparison: 'above',
}],
consequences: [
'Increased costs',
'Wasted compute resources',
],
remediation: 'Add early validation, implement circuit breakers, or reorder to fail fast',
occurrences: 1,
severity: waste.tokenWaste > 0.5 ? 'high' : 'medium',
});
}
}
return antiPatterns;
}
Recommendation Generation
interface LearnedRecommendation {
recommendationId: string;
type: RecommendationType;
title: string;
description: string;
applicability: ApplicabilityCondition[];
expectedBenefit: ExpectedBenefit;
confidence: number;
basedOn: {
patterns: string[];
antiPatterns: string[];
sampleSize: number;
};
}
type RecommendationType =
| 'skill_selection'
| 'graph_structure'
| 'parallelization'
| 'retry_configuration'
| 'resource_allocation'
| 'ordering_optimization';
interface ExpectedBenefit {
metric: 'duration' | 'cost' | 'quality' | 'reliability';
improvement: number; // Percentage improvement
confidence: number;
}
function generateRecommendations(
patterns: Pattern[],
antiPatterns: AntiPattern[]
): LearnedRecommendation[] {
const recommendations: LearnedRecommendation[] = [];
// Recommendations from successful patterns
for (const pattern of patterns) {
if (pattern.confidence >= 0.7 && pattern.occurrences >= 5) {
recommendations.push(patternToRecommendation(pattern));
}
}
// Recommendations from anti-patterns (avoid these)
for (const antiPattern of antiPatterns) {
if (antiPattern.occurrences >= 3) {
recommendations.push(antiPatternToRecommendation(antiPattern));
}
}
// Cross-pattern analysis
recommendations.push(...crossPatternRecommendations(patterns, antiPatterns));
// Sort by expected impact
return recommendations.sort((a, b) =>
b.expectedBenefit.improvement - a.expectedBenefit.improvement
);
}
function patternToRecommendation(pattern: Pattern): LearnedRecommendation {
const typeMapping: Record<PatternType, RecommendationType> = {
'graph_structure': 'graph_structure',
'skill_combination': 'skill_selection',
'execution_order': 'ordering_optimization',
'parallelization': 'parallelization',
'retry_strategy': 'retry_configuration',
'resource_allocation': 'resource_allocation',
'failure_recovery': 'retry_configuration',
};
return {
recommendationId: generateRecommendationId(),
type: typeMapping[pattern.type],
title: `Use: ${pattern.name}`,
description: pattern.description,
applicability: pattern.conditions.map(c => ({
condition: c.condition ?? c.toString(),
required: true,
})),
expectedBenefit: {
metric: 'reliability',
improvement: pattern.outcomes.successRate * 100 - 50, // Above 50% baseline
confidence: pattern.confidence,
},
confidence: pattern.confidence,
basedOn: {
patterns: [pattern.patternId],
antiPatterns: [],
sampleSize: pattern.occurrences,
},
};
}
function antiPatternToRecommendation(antiPattern: AntiPattern): LearnedRecommendation {
return {
recommendationId: generateRecommendationId(),
type: inferRecommendationType(antiPattern),
title: `Avoid: ${antiPattern.name}`,
description: `${antiPattern.description}. ${antiPattern.remediation}`,
applicability: antiPattern.indicators.map(i => ({
condition: `${i.metric} is ${i.comparison} ${i.threshold}`,
required: true,
})),
expectedBenefit: {
metric: antiPattern.type === 'resource_waste' ? 'cost' : 'reliability',
improvement: antiPattern.severity === 'critical' ? 40 :
antiPattern.severity === 'high' ? 25 :
antiPattern.severity === 'medium' ? 15 : 5,
confidence: Math.min(0.9, 0.5 + antiPattern.occurrences * 0.05),
},
confidence: Math.min(0.9, 0.5 + antiPattern.occurrences * 0.05),
basedOn: {
patterns: [],
antiPatterns: [antiPattern.antiPatternId],
sampleSize: antiPattern.occurrences,
},
};
}
function crossPatternRecommendations(
patterns: Pattern[],
antiPatterns: AntiPattern[]
): LearnedRecommendation[] {
const recommendations: LearnedRecommendation[] = [];
// Find complementary skill patterns
const skillPatterns = patterns.filter(p => p.type === 'skill_combination');
for (let i = 0; i < skillPatterns.length; i++) {
for (let j = i + 1; j < skillPatterns.length; j++) {
const overlap = findSkillOverlap(skillPatterns[i], skillPatterns[j]);
if (overlap.length > 0) {
recommendations.push({
recommendationId: generateRecommendationId(),
type: 'skill_selection',
title: `Synergy: ${overlap.join(' + ')}`,
description: `Skills ${overlap.join(', ')} appear in multiple successful patterns`,
applicability: [{ condition: 'Task requires multiple capabilities', required: true }],
expectedBenefit: {
metric: 'quality',
improvement: 20,
confidence: 0.7,
},
confidence: 0.7,
basedOn: {
patterns: [skillPatterns[i].patternId, skillPatterns[j].patternId],
antiPatterns: [],
sampleSize: skillPatterns[i].occurrences + skillPatterns[j].occurrences,
},
});
}
}
}
return recommendations;
}
Pattern Library Report
patternLibrary:
libraryId: "pl-9d8c7b6a-5e4f-3a2b-1c0d"
lastUpdated: "2024-01-15T12:00:00Z"
statistics:
totalPatterns: 15
totalAntiPatterns: 6
totalRecommendations: 21
executionsAnalyzed: 234
timeSpan: "30 days"
topPatterns:
- patternId: "pat-001"
name: "Fan-out-Fan-in"
type: graph_structure
description: "Distribute work to parallel nodes, then aggregate results"
confidence: 0.92
occurrences: 45
outcomes:
successRate: 0.89
avgDuration: 12500
avgCost: 0.045
- patternId: "pat-002"
name: "Validation First"
type: execution_order
description: "Run validation before expensive operations"
confidence: 0.88
occurrences: 67
outcomes:
successRate: 0.94
avgDuration: 8200
avgCost: 0.028
- patternId: "pat-003"
name: "Code Analysis Triple"
type: skill_combination
description: "code-complexity-analyzer + code-security-scanner + code-performance-analyzer"
confidence: 0.85
occurrences: 23
outcomes:
successRate: 0.91
avgDuration: 15000
avgCost: 0.062
topAntiPatterns:
- antiPatternId: "anti-001"
name: "Sequential Bottleneck"
type: bottleneck_structure
severity: high
occurrences: 12
remediation: "Split large sequential node into parallelizable subtasks"
- antiPatternId: "anti-002"
name: "Retry Storm"
type: excessive_retries
severity: medium
occurrences: 8
remediation: "Add pre-validation to catch issues before execution"
recommendations:
- recommendationId: "rec-001"
type: parallelization
title: "Parallelize Independent Analysis"
description: "When running multiple analysis skills, execute them in parallel"
expectedBenefit:
metric: duration
improvement: 45
confidence: 0.85
basedOn:
patterns: ["pat-001", "pat-003"]
sampleSize: 68
- recommendationId: "rec-002"
type: ordering_optimization
title: "Validate Early"
description: "Move validation nodes to earliest possible position"
expectedBenefit:
metric: cost
improvement: 30
confidence: 0.88
basedOn:
patterns: ["pat-002"]
antiPatterns: ["anti-001"]
sampleSize: 67
trends:
- observation: "Success rate improving over time"
metric: successRate
change: +0.08
period: "last 30 days"
- observation: "Average cost decreasing"
metric: avgCost
change: -0.015
period: "last 30 days"
Integration Points
- Input: Execution traces from
dag-execution-tracer - Input: Performance data from
dag-performance-profiler - Input: Failure data from
dag-failure-analyzer - Output: Patterns and recommendations to
dag-graph-builder - Output: Optimization hints to
dag-task-scheduler
Best Practices
- Minimum Sample Size: Require 3+ observations before extracting patterns
- Confidence Decay: Reduce confidence for patterns not seen recently
- Context Matters: Patterns should include applicable conditions
- Actionable Output: Recommendations must be implementable
- Continuous Learning: Update library with each new execution
Learn from history. Find what works. Continuously improve.
GitHub Repository
Related Skills
when-optimizing-prompts-use-prompt-architect
OtherThis skill provides a structured framework for developers to systematically analyze, refine, and optimize prompts for AI systems using evidence-based techniques. It helps eliminate anti-patterns and improve prompt structure, which is triggered by poor response quality or inconsistent outputs. The process includes A/B testing to validate effectiveness and produces an optimized prompt along with an analysis report.
deepspeed
DesignThis skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.
performance-analysis
OtherThis skill provides comprehensive performance analysis for Claude Flow swarms, detecting bottlenecks and profiling operations. It generates detailed reports and offers AI-powered optimization recommendations to improve swarm performance. Use it when you need to monitor, analyze, and optimize the efficiency of your Claude Flow implementations.
when-optimizing-agent-learning-use-reasoningbank-intelligence
OtherThis skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.
