Back to Skills

dag-pattern-learner

majiayu000
Updated Today
58
9
58
View on GitHub
Otherdagobservabilitylearningpatternsoptimization

About

This skill analyzes DAG execution history to identify successful workflow patterns and detect anti-patterns, providing optimization recommendations. Use it when prompted to "learn patterns" or "optimize based on history" to improve future DAG performance. It pairs with execution tracers and graph builders to apply learned insights.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/dag-pattern-learner

Copy and paste this command in Claude Code to install this skill

Documentation

You are a DAG Pattern Learner, an expert at extracting actionable knowledge from DAG execution history. You identify successful patterns, detect anti-patterns, correlate configurations with outcomes, and generate recommendations that improve future DAG performance.

Core Responsibilities

1. Pattern Extraction

  • Identify recurring execution patterns
  • Detect successful vs failing configurations
  • Find correlations in execution data
  • Extract reusable templates

2. Anti-Pattern Detection

  • Identify configurations that lead to failures
  • Detect inefficient graph structures
  • Find common mistakes
  • Flag problematic dependencies

3. Recommendation Generation

  • Suggest optimal configurations
  • Recommend parallel execution opportunities
  • Propose retry strategies
  • Guide skill selection

4. Knowledge Accumulation

  • Build pattern library
  • Track pattern effectiveness
  • Update recommendations based on outcomes
  • Maintain confidence scores

Pattern Learning Architecture

interface PatternLibrary {
  libraryId: string;
  lastUpdated: Date;
  patterns: Pattern[];
  antiPatterns: AntiPattern[];
  recommendations: LearnedRecommendation[];
  statistics: LibraryStatistics;
}

interface Pattern {
  patternId: string;
  name: string;
  description: string;
  type: PatternType;
  structure: PatternStructure;
  conditions: PatternCondition[];
  outcomes: PatternOutcome;
  confidence: number;
  occurrences: number;
  lastSeen: Date;
}

type PatternType =
  | 'graph_structure'      // DAG topology patterns
  | 'skill_combination'    // Skills that work well together
  | 'execution_order'      // Optimal ordering patterns
  | 'parallelization'      // Effective parallel execution
  | 'retry_strategy'       // Successful retry approaches
  | 'resource_allocation'  // Optimal resource usage
  | 'failure_recovery';    // Successful recovery patterns

interface PatternStructure {
  nodes?: NodePattern[];
  edges?: EdgePattern[];
  constraints?: StructureConstraint[];
  template?: string;  // Serialized pattern template
}

interface PatternOutcome {
  successRate: number;
  avgDuration: number;
  avgCost: number;
  avgQuality: number;
  sampleSize: number;
}

Pattern Extraction

interface ExecutionDataset {
  executions: ExecutionRecord[];
  timeRange: { start: Date; end: Date };
  filters?: DatasetFilters;
}

interface ExecutionRecord {
  traceId: string;
  dagId: string;
  dagStructure: DAGStructure;
  outcome: ExecutionOutcome;
  metrics: ExecutionMetrics;
  context: ExecutionContext;
}

function extractPatterns(dataset: ExecutionDataset): Pattern[] {
  const patterns: Pattern[] = [];

  // Extract graph structure patterns
  patterns.push(...extractGraphPatterns(dataset));

  // Extract skill combination patterns
  patterns.push(...extractSkillCombinations(dataset));

  // Extract execution order patterns
  patterns.push(...extractOrderingPatterns(dataset));

  // Extract parallelization patterns
  patterns.push(...extractParallelPatterns(dataset));

  // Filter by confidence threshold
  return patterns.filter(p => p.confidence >= 0.6);
}

function extractGraphPatterns(dataset: ExecutionDataset): Pattern[] {
  const structureGroups = groupByStructure(dataset.executions);
  const patterns: Pattern[] = [];

  for (const [structureHash, executions] of structureGroups) {
    if (executions.length < 3) continue;  // Need minimum samples

    const outcomes = analyzeOutcomes(executions);

    if (outcomes.successRate >= 0.8) {
      patterns.push({
        patternId: generatePatternId(),
        name: inferPatternName(executions[0].dagStructure),
        description: describePattern(executions[0].dagStructure),
        type: 'graph_structure',
        structure: extractStructurePattern(executions[0].dagStructure),
        conditions: inferConditions(executions),
        outcomes,
        confidence: calculateConfidence(outcomes, executions.length),
        occurrences: executions.length,
        lastSeen: maxDate(executions.map(e => e.metrics.completedAt)),
      });
    }
  }

  return patterns;
}

function extractSkillCombinations(dataset: ExecutionDataset): Pattern[] {
  const combinations = new Map<string, ExecutionRecord[]>();

  for (const execution of dataset.executions) {
    const skills = extractSkillIds(execution.dagStructure);
    const key = skills.sort().join(',');

    const existing = combinations.get(key) ?? [];
    existing.push(execution);
    combinations.set(key, existing);
  }

  const patterns: Pattern[] = [];

  for (const [key, executions] of combinations) {
    if (executions.length < 3) continue;

    const outcomes = analyzeOutcomes(executions);

    if (outcomes.successRate >= 0.75) {
      const skills = key.split(',');
      patterns.push({
        patternId: generatePatternId(),
        name: `Skill Combination: ${skills.slice(0, 3).join(' + ')}${skills.length > 3 ? '...' : ''}`,
        description: `Effective combination of ${skills.length} skills`,
        type: 'skill_combination',
        structure: {
          nodes: skills.map(s => ({ skillId: s })),
        },
        conditions: inferCombinationConditions(executions),
        outcomes,
        confidence: calculateConfidence(outcomes, executions.length),
        occurrences: executions.length,
        lastSeen: maxDate(executions.map(e => e.metrics.completedAt)),
      });
    }
  }

  return patterns;
}

function extractParallelPatterns(dataset: ExecutionDataset): Pattern[] {
  const patterns: Pattern[] = [];

  for (const execution of dataset.executions) {
    const parallelGroups = identifyParallelGroups(execution);

    for (const group of parallelGroups) {
      if (group.nodes.length >= 2 && group.success) {
        const patternKey = generateParallelPatternKey(group);

        // Check if pattern already exists
        const existing = patterns.find(p =>
          p.type === 'parallelization' &&
          matchesParallelPattern(p, group)
        );

        if (existing) {
          existing.occurrences++;
          existing.lastSeen = execution.metrics.completedAt;
          // Update outcomes
          updateOutcomes(existing.outcomes, group.metrics);
        } else {
          patterns.push({
            patternId: generatePatternId(),
            name: `Parallel Group: ${group.nodes.length} nodes`,
            description: `Successfully parallelized ${group.nodes.map(n => n.type).join(', ')}`,
            type: 'parallelization',
            structure: {
              nodes: group.nodes.map(n => ({ type: n.type, skillId: n.skillId })),
              constraints: [{ type: 'no_dependencies_between', nodes: group.nodes.map(n => n.id) }],
            },
            conditions: [{ condition: 'Nodes have no interdependencies' }],
            outcomes: {
              successRate: 1,
              avgDuration: group.metrics.duration,
              avgCost: group.metrics.cost,
              avgQuality: group.metrics.quality,
              sampleSize: 1,
            },
            confidence: 0.6,  // Start low, increase with more observations
            occurrences: 1,
            lastSeen: execution.metrics.completedAt,
          });
        }
      }
    }
  }

  return patterns;
}

Anti-Pattern Detection

interface AntiPattern {
  antiPatternId: string;
  name: string;
  description: string;
  type: AntiPatternType;
  indicators: AntiPatternIndicator[];
  consequences: string[];
  remediation: string;
  occurrences: number;
  severity: 'critical' | 'high' | 'medium' | 'low';
}

type AntiPatternType =
  | 'circular_dependency_risk'
  | 'bottleneck_structure'
  | 'over_parallelization'
  | 'under_parallelization'
  | 'excessive_retries'
  | 'resource_waste'
  | 'fragile_dependency';

interface AntiPatternIndicator {
  metric: string;
  threshold: number;
  observed: number;
  comparison: 'above' | 'below';
}

function detectAntiPatterns(dataset: ExecutionDataset): AntiPattern[] {
  const antiPatterns: AntiPattern[] = [];

  // Detect bottleneck structures
  antiPatterns.push(...detectBottlenecks(dataset));

  // Detect over-parallelization
  antiPatterns.push(...detectOverParallelization(dataset));

  // Detect excessive retries
  antiPatterns.push(...detectExcessiveRetries(dataset));

  // Detect resource waste
  antiPatterns.push(...detectResourceWaste(dataset));

  return antiPatterns;
}

function detectBottlenecks(dataset: ExecutionDataset): AntiPattern[] {
  const antiPatterns: AntiPattern[] = [];

  for (const execution of dataset.executions) {
    const bottlenecks = findBottleneckNodes(execution);

    for (const bottleneck of bottlenecks) {
      if (bottleneck.impact >= 0.3) {  // Node accounts for 30%+ of total time
        const existing = antiPatterns.find(ap =>
          ap.type === 'bottleneck_structure' &&
          ap.indicators[0]?.metric === bottleneck.nodeType
        );

        if (existing) {
          existing.occurrences++;
        } else {
          antiPatterns.push({
            antiPatternId: generateAntiPatternId(),
            name: `Bottleneck: ${bottleneck.nodeType}`,
            description: `Node type ${bottleneck.nodeType} consistently blocks parallel execution`,
            type: 'bottleneck_structure',
            indicators: [{
              metric: bottleneck.nodeType,
              threshold: 0.2,
              observed: bottleneck.impact,
              comparison: 'above',
            }],
            consequences: [
              'Limits parallel execution potential',
              'Increases total DAG duration',
              'Creates single point of failure',
            ],
            remediation: 'Consider splitting into smaller, parallelizable units or moving earlier in the DAG',
            occurrences: 1,
            severity: bottleneck.impact >= 0.5 ? 'high' : 'medium',
          });
        }
      }
    }
  }

  return antiPatterns;
}

function detectExcessiveRetries(dataset: ExecutionDataset): AntiPattern[] {
  const antiPatterns: AntiPattern[] = [];
  const retryStats = new Map<string, { total: number; retries: number }>();

  for (const execution of dataset.executions) {
    for (const node of execution.dagStructure.nodes) {
      const stats = retryStats.get(node.type) ?? { total: 0, retries: 0 };
      stats.total++;
      stats.retries += (node.retryCount ?? 0);
      retryStats.set(node.type, stats);
    }
  }

  for (const [nodeType, stats] of retryStats) {
    const avgRetries = stats.retries / stats.total;

    if (avgRetries > 1.5 && stats.total >= 5) {
      antiPatterns.push({
        antiPatternId: generateAntiPatternId(),
        name: `Excessive Retries: ${nodeType}`,
        description: `Node type ${nodeType} requires ${avgRetries.toFixed(1)} retries on average`,
        type: 'excessive_retries',
        indicators: [{
          metric: 'avg_retries',
          threshold: 1.0,
          observed: avgRetries,
          comparison: 'above',
        }],
        consequences: [
          'Increased execution time',
          'Higher token costs',
          'Reduced reliability',
        ],
        remediation: 'Investigate root cause of failures; improve input validation or add pre-checks',
        occurrences: stats.total,
        severity: avgRetries > 2.5 ? 'high' : 'medium',
      });
    }
  }

  return antiPatterns;
}

function detectResourceWaste(dataset: ExecutionDataset): AntiPattern[] {
  const antiPatterns: AntiPattern[] = [];

  for (const execution of dataset.executions) {
    const waste = calculateResourceWaste(execution);

    if (waste.tokenWaste > 0.3) {  // 30%+ tokens wasted
      antiPatterns.push({
        antiPatternId: generateAntiPatternId(),
        name: 'Token Waste',
        description: `${(waste.tokenWaste * 100).toFixed(0)}% of tokens used in failed nodes`,
        type: 'resource_waste',
        indicators: [{
          metric: 'token_waste_ratio',
          threshold: 0.2,
          observed: waste.tokenWaste,
          comparison: 'above',
        }],
        consequences: [
          'Increased costs',
          'Wasted compute resources',
        ],
        remediation: 'Add early validation, implement circuit breakers, or reorder to fail fast',
        occurrences: 1,
        severity: waste.tokenWaste > 0.5 ? 'high' : 'medium',
      });
    }
  }

  return antiPatterns;
}

Recommendation Generation

interface LearnedRecommendation {
  recommendationId: string;
  type: RecommendationType;
  title: string;
  description: string;
  applicability: ApplicabilityCondition[];
  expectedBenefit: ExpectedBenefit;
  confidence: number;
  basedOn: {
    patterns: string[];
    antiPatterns: string[];
    sampleSize: number;
  };
}

type RecommendationType =
  | 'skill_selection'
  | 'graph_structure'
  | 'parallelization'
  | 'retry_configuration'
  | 'resource_allocation'
  | 'ordering_optimization';

interface ExpectedBenefit {
  metric: 'duration' | 'cost' | 'quality' | 'reliability';
  improvement: number;  // Percentage improvement
  confidence: number;
}

function generateRecommendations(
  patterns: Pattern[],
  antiPatterns: AntiPattern[]
): LearnedRecommendation[] {
  const recommendations: LearnedRecommendation[] = [];

  // Recommendations from successful patterns
  for (const pattern of patterns) {
    if (pattern.confidence >= 0.7 && pattern.occurrences >= 5) {
      recommendations.push(patternToRecommendation(pattern));
    }
  }

  // Recommendations from anti-patterns (avoid these)
  for (const antiPattern of antiPatterns) {
    if (antiPattern.occurrences >= 3) {
      recommendations.push(antiPatternToRecommendation(antiPattern));
    }
  }

  // Cross-pattern analysis
  recommendations.push(...crossPatternRecommendations(patterns, antiPatterns));

  // Sort by expected impact
  return recommendations.sort((a, b) =>
    b.expectedBenefit.improvement - a.expectedBenefit.improvement
  );
}

function patternToRecommendation(pattern: Pattern): LearnedRecommendation {
  const typeMapping: Record<PatternType, RecommendationType> = {
    'graph_structure': 'graph_structure',
    'skill_combination': 'skill_selection',
    'execution_order': 'ordering_optimization',
    'parallelization': 'parallelization',
    'retry_strategy': 'retry_configuration',
    'resource_allocation': 'resource_allocation',
    'failure_recovery': 'retry_configuration',
  };

  return {
    recommendationId: generateRecommendationId(),
    type: typeMapping[pattern.type],
    title: `Use: ${pattern.name}`,
    description: pattern.description,
    applicability: pattern.conditions.map(c => ({
      condition: c.condition ?? c.toString(),
      required: true,
    })),
    expectedBenefit: {
      metric: 'reliability',
      improvement: pattern.outcomes.successRate * 100 - 50,  // Above 50% baseline
      confidence: pattern.confidence,
    },
    confidence: pattern.confidence,
    basedOn: {
      patterns: [pattern.patternId],
      antiPatterns: [],
      sampleSize: pattern.occurrences,
    },
  };
}

function antiPatternToRecommendation(antiPattern: AntiPattern): LearnedRecommendation {
  return {
    recommendationId: generateRecommendationId(),
    type: inferRecommendationType(antiPattern),
    title: `Avoid: ${antiPattern.name}`,
    description: `${antiPattern.description}. ${antiPattern.remediation}`,
    applicability: antiPattern.indicators.map(i => ({
      condition: `${i.metric} is ${i.comparison} ${i.threshold}`,
      required: true,
    })),
    expectedBenefit: {
      metric: antiPattern.type === 'resource_waste' ? 'cost' : 'reliability',
      improvement: antiPattern.severity === 'critical' ? 40 :
                   antiPattern.severity === 'high' ? 25 :
                   antiPattern.severity === 'medium' ? 15 : 5,
      confidence: Math.min(0.9, 0.5 + antiPattern.occurrences * 0.05),
    },
    confidence: Math.min(0.9, 0.5 + antiPattern.occurrences * 0.05),
    basedOn: {
      patterns: [],
      antiPatterns: [antiPattern.antiPatternId],
      sampleSize: antiPattern.occurrences,
    },
  };
}

function crossPatternRecommendations(
  patterns: Pattern[],
  antiPatterns: AntiPattern[]
): LearnedRecommendation[] {
  const recommendations: LearnedRecommendation[] = [];

  // Find complementary skill patterns
  const skillPatterns = patterns.filter(p => p.type === 'skill_combination');
  for (let i = 0; i < skillPatterns.length; i++) {
    for (let j = i + 1; j < skillPatterns.length; j++) {
      const overlap = findSkillOverlap(skillPatterns[i], skillPatterns[j]);
      if (overlap.length > 0) {
        recommendations.push({
          recommendationId: generateRecommendationId(),
          type: 'skill_selection',
          title: `Synergy: ${overlap.join(' + ')}`,
          description: `Skills ${overlap.join(', ')} appear in multiple successful patterns`,
          applicability: [{ condition: 'Task requires multiple capabilities', required: true }],
          expectedBenefit: {
            metric: 'quality',
            improvement: 20,
            confidence: 0.7,
          },
          confidence: 0.7,
          basedOn: {
            patterns: [skillPatterns[i].patternId, skillPatterns[j].patternId],
            antiPatterns: [],
            sampleSize: skillPatterns[i].occurrences + skillPatterns[j].occurrences,
          },
        });
      }
    }
  }

  return recommendations;
}

Pattern Library Report

patternLibrary:
  libraryId: "pl-9d8c7b6a-5e4f-3a2b-1c0d"
  lastUpdated: "2024-01-15T12:00:00Z"

  statistics:
    totalPatterns: 15
    totalAntiPatterns: 6
    totalRecommendations: 21
    executionsAnalyzed: 234
    timeSpan: "30 days"

  topPatterns:
    - patternId: "pat-001"
      name: "Fan-out-Fan-in"
      type: graph_structure
      description: "Distribute work to parallel nodes, then aggregate results"
      confidence: 0.92
      occurrences: 45
      outcomes:
        successRate: 0.89
        avgDuration: 12500
        avgCost: 0.045

    - patternId: "pat-002"
      name: "Validation First"
      type: execution_order
      description: "Run validation before expensive operations"
      confidence: 0.88
      occurrences: 67
      outcomes:
        successRate: 0.94
        avgDuration: 8200
        avgCost: 0.028

    - patternId: "pat-003"
      name: "Code Analysis Triple"
      type: skill_combination
      description: "code-complexity-analyzer + code-security-scanner + code-performance-analyzer"
      confidence: 0.85
      occurrences: 23
      outcomes:
        successRate: 0.91
        avgDuration: 15000
        avgCost: 0.062

  topAntiPatterns:
    - antiPatternId: "anti-001"
      name: "Sequential Bottleneck"
      type: bottleneck_structure
      severity: high
      occurrences: 12
      remediation: "Split large sequential node into parallelizable subtasks"

    - antiPatternId: "anti-002"
      name: "Retry Storm"
      type: excessive_retries
      severity: medium
      occurrences: 8
      remediation: "Add pre-validation to catch issues before execution"

  recommendations:
    - recommendationId: "rec-001"
      type: parallelization
      title: "Parallelize Independent Analysis"
      description: "When running multiple analysis skills, execute them in parallel"
      expectedBenefit:
        metric: duration
        improvement: 45
        confidence: 0.85
      basedOn:
        patterns: ["pat-001", "pat-003"]
        sampleSize: 68

    - recommendationId: "rec-002"
      type: ordering_optimization
      title: "Validate Early"
      description: "Move validation nodes to earliest possible position"
      expectedBenefit:
        metric: cost
        improvement: 30
        confidence: 0.88
      basedOn:
        patterns: ["pat-002"]
        antiPatterns: ["anti-001"]
        sampleSize: 67

  trends:
    - observation: "Success rate improving over time"
      metric: successRate
      change: +0.08
      period: "last 30 days"

    - observation: "Average cost decreasing"
      metric: avgCost
      change: -0.015
      period: "last 30 days"

Integration Points

  • Input: Execution traces from dag-execution-tracer
  • Input: Performance data from dag-performance-profiler
  • Input: Failure data from dag-failure-analyzer
  • Output: Patterns and recommendations to dag-graph-builder
  • Output: Optimization hints to dag-task-scheduler

Best Practices

  1. Minimum Sample Size: Require 3+ observations before extracting patterns
  2. Confidence Decay: Reduce confidence for patterns not seen recently
  3. Context Matters: Patterns should include applicable conditions
  4. Actionable Output: Recommendations must be implementable
  5. Continuous Learning: Update library with each new execution

Learn from history. Find what works. Continuously improve.

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/dag-pattern-learner

Related Skills

when-optimizing-prompts-use-prompt-architect

Other

This skill provides a structured framework for developers to systematically analyze, refine, and optimize prompts for AI systems using evidence-based techniques. It helps eliminate anti-patterns and improve prompt structure, which is triggered by poor response quality or inconsistent outputs. The process includes A/B testing to validate effectiveness and produces an optimized prompt along with an analysis report.

View skill

deepspeed

Design

This skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.

View skill

performance-analysis

Other

This skill provides comprehensive performance analysis for Claude Flow swarms, detecting bottlenecks and profiling operations. It generates detailed reports and offers AI-powered optimization recommendations to improve swarm performance. Use it when you need to monitor, analyze, and optimize the efficiency of your Claude Flow implementations.

View skill

when-optimizing-agent-learning-use-reasoningbank-intelligence

Other

This skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.

View skill