performance-analysis
About
This skill provides comprehensive performance analysis and bottleneck detection for Claude Flow swarms. It identifies issues across communication, processing, memory, and network layers while offering AI-powered optimization recommendations. Use it for real-time monitoring, profiling swarm operations, and generating detailed performance reports.
Documentation
Performance Analysis Skill
Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.
Overview
This skill consolidates all performance analysis capabilities:
- Bottleneck Detection: Identify performance bottlenecks across communication, processing, memory, and network
- Performance Profiling: Real-time monitoring and historical analysis of swarm operations
- Report Generation: Create comprehensive performance reports in multiple formats
- Optimization Recommendations: AI-powered suggestions for improving performance
Quick Start
Basic Bottleneck Detection
npx claude-flow bottleneck detect
Generate Performance Report
npx claude-flow analysis performance-report --format html --include-metrics
Analyze and Auto-Fix
npx claude-flow bottleneck detect --fix --threshold 15
Core Capabilities
1. Bottleneck Detection
Command Syntax
npx claude-flow bottleneck detect [options]
Options
--swarm-id, -s <id>- Analyze specific swarm (default: current)--time-range, -t <range>- Analysis period: 1h, 24h, 7d, all (default: 1h)--threshold <percent>- Bottleneck threshold percentage (default: 20)--export, -e <file>- Export analysis to file--fix- Apply automatic optimizations
Usage Examples
# Basic detection for current swarm
npx claude-flow bottleneck detect
# Analyze specific swarm over 24 hours
npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h
# Export detailed analysis
npx claude-flow bottleneck detect -t 24h -e bottlenecks.json
# Auto-fix detected issues
npx claude-flow bottleneck detect --fix --threshold 15
# Low threshold for sensitive detection
npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json
Metrics Analyzed
Communication Bottlenecks:
- Message queue delays
- Agent response times
- Coordination overhead
- Memory access patterns
- Inter-agent communication latency
Processing Bottlenecks:
- Task completion times
- Agent utilization rates
- Parallel execution efficiency
- Resource contention
- CPU/memory usage patterns
Memory Bottlenecks:
- Cache hit rates
- Memory access patterns
- Storage I/O performance
- Neural pattern loading times
- Memory allocation efficiency
Network Bottlenecks:
- API call latency
- MCP communication delays
- External service timeouts
- Concurrent request limits
- Network throughput issues
Output Format
π Bottleneck Analysis Report
βββββββββββββββββββββββββββ
π Summary
βββ Time Range: Last 1 hour
βββ Agents Analyzed: 6
βββ Tasks Processed: 42
βββ Critical Issues: 2
π¨ Critical Bottlenecks
1. Agent Communication (35% impact)
βββ coordinator β coder-1 messages delayed by 2.3s avg
2. Memory Access (28% impact)
βββ Neural pattern loading taking 1.8s per access
β οΈ Warning Bottlenecks
1. Task Queue (18% impact)
βββ 5 tasks waiting > 10s for assignment
π‘ Recommendations
1. Switch to hierarchical topology (est. 40% improvement)
2. Enable memory caching (est. 25% improvement)
3. Increase agent concurrency to 8 (est. 20% improvement)
β
Quick Fixes Available
Run with --fix to apply:
- Enable smart caching
- Optimize message routing
- Adjust agent priorities
2. Performance Profiling
Real-time Detection
Automatic analysis during task execution:
- Execution time vs. complexity
- Agent utilization rates
- Resource constraints
- Operation patterns
Common Bottleneck Patterns
Time Bottlenecks:
- Tasks taking > 5 minutes
- Sequential operations that could parallelize
- Redundant file operations
- Inefficient algorithm implementations
Coordination Bottlenecks:
- Single agent for complex tasks
- Unbalanced agent workloads
- Poor topology selection
- Excessive synchronization points
Resource Bottlenecks:
- High operation count (> 100)
- Memory constraints
- I/O limitations
- Thread pool saturation
MCP Integration
// Check for bottlenecks in Claude Code
mcp__claude-flow__bottleneck_detect({
timeRange: "1h",
threshold: 20,
autoFix: false
})
// Get detailed task results with bottleneck analysis
mcp__claude-flow__task_results({
taskId: "task-123",
format: "detailed"
})
Result Format:
{
"bottlenecks": [
{
"type": "coordination",
"severity": "high",
"description": "Single agent used for complex task",
"recommendation": "Spawn specialized agents for parallel work",
"impact": "35%",
"affectedComponents": ["coordinator", "coder-1"]
}
],
"improvements": [
{
"area": "execution_time",
"suggestion": "Use parallel task execution",
"expectedImprovement": "30-50% time reduction",
"implementationSteps": [
"Split task into smaller units",
"Spawn 3-4 specialized agents",
"Use mesh topology for coordination"
]
}
],
"metrics": {
"avgExecutionTime": "142s",
"agentUtilization": "67%",
"cacheHitRate": "82%",
"parallelizationFactor": 1.2
}
}
3. Report Generation
Command Syntax
npx claude-flow analysis performance-report [options]
Options
--format <type>- Report format: json, html, markdown (default: markdown)--include-metrics- Include detailed metrics and charts--compare <id>- Compare with previous swarm--time-range <range>- Analysis period: 1h, 24h, 7d, 30d, all--output <file>- Output file path--sections <list>- Comma-separated sections to include
Report Sections
-
Executive Summary
- Overall performance score
- Key metrics overview
- Critical findings
-
Swarm Overview
- Topology configuration
- Agent distribution
- Task statistics
-
Performance Metrics
- Execution times
- Throughput analysis
- Resource utilization
- Latency breakdown
-
Bottleneck Analysis
- Identified bottlenecks
- Impact assessment
- Optimization priorities
-
Comparative Analysis (when --compare used)
- Performance trends
- Improvement metrics
- Regression detection
-
Recommendations
- Prioritized action items
- Expected improvements
- Implementation guidance
Usage Examples
# Generate HTML report with all metrics
npx claude-flow analysis performance-report --format html --include-metrics
# Compare current swarm with previous
npx claude-flow analysis performance-report --compare swarm-123 --format markdown
# Custom output with specific sections
npx claude-flow analysis performance-report \
--sections summary,metrics,recommendations \
--output reports/perf-analysis.html \
--format html
# Weekly performance report
npx claude-flow analysis performance-report \
--time-range 7d \
--include-metrics \
--format markdown \
--output docs/weekly-performance.md
# JSON format for CI/CD integration
npx claude-flow analysis performance-report \
--format json \
--output build/performance.json
Sample Markdown Report
# Performance Analysis Report
## Executive Summary
- **Overall Score**: 87/100
- **Analysis Period**: Last 24 hours
- **Swarms Analyzed**: 3
- **Critical Issues**: 1
## Key Metrics
| Metric | Value | Trend | Target |
|--------|-------|-------|--------|
| Avg Task Time | 42s | β 12% | 35s |
| Agent Utilization | 78% | β 5% | 85% |
| Cache Hit Rate | 91% | β | 90% |
| Parallel Efficiency | 2.3x | β 0.4x | 2.5x |
## Bottleneck Analysis
### Critical
1. **Agent Communication Delay** (Impact: 35%)
- Coordinator β Coder messages delayed by 2.3s avg
- **Fix**: Switch to hierarchical topology
### Warnings
1. **Memory Access Pattern** (Impact: 18%)
- Neural pattern loading: 1.8s per access
- **Fix**: Enable memory caching
## Recommendations
1. **High Priority**: Switch to hierarchical topology (40% improvement)
2. **Medium Priority**: Enable memory caching (25% improvement)
3. **Low Priority**: Increase agent concurrency to 8 (20% improvement)
4. Optimization Recommendations
Automatic Fixes
When using --fix, the following optimizations may be applied:
1. Topology Optimization
- Switch to more efficient topology (mesh β hierarchical)
- Adjust communication patterns
- Reduce coordination overhead
- Optimize message routing
2. Caching Enhancement
- Enable memory caching
- Optimize cache strategies
- Preload common patterns
- Implement cache warming
3. Concurrency Tuning
- Adjust agent counts
- Optimize parallel execution
- Balance workload distribution
- Implement load balancing
4. Priority Adjustment
- Reorder task queues
- Prioritize critical paths
- Reduce wait times
- Implement fair scheduling
5. Resource Optimization
- Optimize memory usage
- Reduce I/O operations
- Batch API calls
- Implement connection pooling
Performance Impact
Typical improvements after bottleneck resolution:
- Communication: 30-50% faster message delivery
- Processing: 20-40% reduced task completion time
- Memory: 40-60% fewer cache misses
- Network: 25-45% reduced API latency
- Overall: 25-45% total performance improvement
Advanced Usage
Continuous Monitoring
# Monitor performance in real-time
npx claude-flow swarm monitor --interval 5
# Generate hourly reports
while true; do
npx claude-flow analysis performance-report \
--format json \
--output logs/perf-$(date +%Y%m%d-%H%M).json
sleep 3600
done
CI/CD Integration
# .github/workflows/performance.yml
name: Performance Analysis
on: [push, pull_request]
jobs:
analyze:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Run Performance Analysis
run: |
npx claude-flow analysis performance-report \
--format json \
--output performance.json
- name: Check Performance Thresholds
run: |
npx claude-flow bottleneck detect \
--threshold 15 \
--export bottlenecks.json
- name: Upload Reports
uses: actions/upload-artifact@v2
with:
name: performance-reports
path: |
performance.json
bottlenecks.json
Custom Analysis Scripts
// scripts/analyze-performance.js
const { exec } = require('child_process');
const fs = require('fs');
async function analyzePerformance() {
// Run bottleneck detection
const bottlenecks = await runCommand(
'npx claude-flow bottleneck detect --format json'
);
// Generate performance report
const report = await runCommand(
'npx claude-flow analysis performance-report --format json'
);
// Analyze results
const analysis = {
bottlenecks: JSON.parse(bottlenecks),
performance: JSON.parse(report),
timestamp: new Date().toISOString()
};
// Save combined analysis
fs.writeFileSync(
'analysis/combined-report.json',
JSON.stringify(analysis, null, 2)
);
// Generate alerts if needed
if (analysis.bottlenecks.critical.length > 0) {
console.error('CRITICAL: Performance bottlenecks detected!');
process.exit(1);
}
}
function runCommand(cmd) {
return new Promise((resolve, reject) => {
exec(cmd, (error, stdout, stderr) => {
if (error) reject(error);
else resolve(stdout);
});
});
}
analyzePerformance().catch(console.error);
Best Practices
1. Regular Analysis
- Run bottleneck detection after major changes
- Generate weekly performance reports
- Monitor trends over time
- Set up automated alerts
2. Threshold Tuning
- Start with default threshold (20%)
- Lower for production systems (10-15%)
- Higher for development (25-30%)
- Adjust based on requirements
3. Fix Strategy
- Always review before applying --fix
- Test fixes in development first
- Apply fixes incrementally
- Monitor impact after changes
4. Report Integration
- Include in documentation
- Share with team regularly
- Track improvements over time
- Use for capacity planning
5. Continuous Optimization
- Learn from each analysis
- Build performance budgets
- Establish baselines
- Set improvement goals
Troubleshooting
Common Issues
High Memory Usage
# Analyze memory bottlenecks
npx claude-flow bottleneck detect --threshold 10
# Check cache performance
npx claude-flow cache manage --action stats
# Review memory metrics
npx claude-flow memory usage
Slow Task Execution
# Identify slow tasks
npx claude-flow task status --detailed
# Analyze coordination overhead
npx claude-flow bottleneck detect --time-range 1h
# Check agent utilization
npx claude-flow agent metrics
Poor Cache Performance
# Analyze cache hit rates
npx claude-flow analysis performance-report --sections metrics
# Review cache strategy
npx claude-flow cache manage --action analyze
# Enable cache warming
npx claude-flow bottleneck detect --fix
Integration with Other Skills
- swarm-orchestration: Use performance data to optimize topology
- memory-management: Improve cache strategies based on analysis
- task-coordination: Adjust scheduling based on bottlenecks
- neural-training: Train patterns from performance data
Related Commands
npx claude-flow swarm monitor- Real-time monitoringnpx claude-flow token usage- Token optimization analysisnpx claude-flow cache manage- Cache optimizationnpx claude-flow agent metrics- Agent performance metricsnpx claude-flow task status- Task execution analysis
See Also
- Bottleneck Detection Guide
- Performance Report Guide
- Performance Bottlenecks Overview
- Swarm Monitoring Documentation
- Memory Management Documentation
Version: 1.0.0 Last Updated: 2025-10-19 Maintainer: Claude Flow Team
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/performance-analysisCopy and paste this command in Claude Code to install this skill
GitHub δ»εΊ
Related Skills
deepspeed
DesignThis skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.
when-optimizing-prompts-use-prompt-architect
OtherThis skill provides a structured framework for developers to systematically analyze, refine, and optimize prompts for AI systems using evidence-based techniques. It helps eliminate anti-patterns and improve prompt structure, which is triggered by poor response quality or inconsistent outputs. The process includes A/B testing to validate effectiveness and produces an optimized prompt along with an analysis report.
when-optimizing-agent-learning-use-reasoningbank-intelligence
OtherThis skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.
Verification & Quality Assurance
OtherThis skill automatically verifies and scores the quality of code and agent outputs using a 0.95 accuracy threshold. It performs truth scoring, code correctness checks, and can instantly roll back changes that fail verification. Use it to ensure high-quality outputs and maintain codebase reliability in your development workflow.
