flow-nexus-neural
About
Flow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports multiple architectures including feedforward, LSTM, GAN, and transformer models, with options for custom training or pre-built templates. Use this skill when you need scalable, sandboxed environments for machine learning development and deployment.
Documentation
Flow Nexus Neural Networks
Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace.
Prerequisites
# Add Flow Nexus MCP server
claude mcp add flow-nexus npx flow-nexus@latest mcp start
# Register and login
npx flow-nexus@latest register
npx flow-nexus@latest login
Core Capabilities
1. Single-Node Neural Training
Train neural networks with custom architectures and configurations.
Available Architectures:
feedforward- Standard fully-connected networkslstm- Long Short-Term Memory for sequencesgan- Generative Adversarial Networksautoencoder- Dimensionality reductiontransformer- Attention-based models
Training Tiers:
nano- Minimal resources (fast, limited)mini- Small modelssmall- Standard modelsmedium- Complex modelslarge- Large-scale training
Example: Train Custom Classifier
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "feedforward",
layers: [
{ type: "dense", units: 256, activation: "relu" },
{ type: "dropout", rate: 0.3 },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dropout", rate: 0.2 },
{ type: "dense", units: 64, activation: "relu" },
{ type: "dense", units: 10, activation: "softmax" }
]
},
training: {
epochs: 100,
batch_size: 32,
learning_rate: 0.001,
optimizer: "adam"
},
divergent: {
enabled: true,
pattern: "lateral", // quantum, chaotic, associative, evolutionary
factor: 0.5
}
},
tier: "small",
user_id: "your_user_id"
})
Example: LSTM for Time Series
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "lstm",
layers: [
{ type: "lstm", units: 128, return_sequences: true },
{ type: "dropout", rate: 0.2 },
{ type: "lstm", units: 64 },
{ type: "dense", units: 1, activation: "linear" }
]
},
training: {
epochs: 150,
batch_size: 64,
learning_rate: 0.01,
optimizer: "adam"
}
},
tier: "medium"
})
Example: Transformer Architecture
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "transformer",
layers: [
{ type: "embedding", vocab_size: 10000, embedding_dim: 512 },
{ type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
{ type: "global_average_pooling" },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: 2, activation: "softmax" }
]
},
training: {
epochs: 50,
batch_size: 16,
learning_rate: 0.0001,
optimizer: "adam"
}
},
tier: "large"
})
2. Model Inference
Run predictions on trained models.
mcp__flow-nexus__neural_predict({
model_id: "model_abc123",
input: [
[0.5, 0.3, 0.2, 0.1],
[0.8, 0.1, 0.05, 0.05],
[0.2, 0.6, 0.15, 0.05]
],
user_id: "your_user_id"
})
Response:
{
"predictions": [
[0.12, 0.85, 0.03],
[0.89, 0.08, 0.03],
[0.05, 0.92, 0.03]
],
"inference_time_ms": 45,
"model_version": "1.0.0"
}
3. Template Marketplace
Browse and deploy pre-trained models from the marketplace.
List Available Templates
mcp__flow-nexus__neural_list_templates({
category: "classification", // timeseries, regression, nlp, vision, anomaly, generative
tier: "free", // or "paid"
search: "sentiment",
limit: 20
})
Response:
{
"templates": [
{
"id": "sentiment-analysis-v2",
"name": "Sentiment Analysis Classifier",
"description": "Pre-trained BERT model for sentiment analysis",
"category": "nlp",
"accuracy": 0.94,
"downloads": 1523,
"tier": "free"
},
{
"id": "image-classifier-resnet",
"name": "ResNet Image Classifier",
"description": "ResNet-50 for image classification",
"category": "vision",
"accuracy": 0.96,
"downloads": 2341,
"tier": "paid"
}
]
}
Deploy Template
mcp__flow-nexus__neural_deploy_template({
template_id: "sentiment-analysis-v2",
custom_config: {
training: {
epochs: 50,
learning_rate: 0.0001
}
},
user_id: "your_user_id"
})
4. Distributed Training Clusters
Train large models across multiple E2B sandboxes with distributed computing.
Initialize Cluster
mcp__flow-nexus__neural_cluster_init({
name: "large-model-cluster",
architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
topology: "mesh", // mesh, ring, star, hierarchical
consensus: "proof-of-learning", // byzantine, raft, gossip
daaEnabled: true, // Decentralized Autonomous Agents
wasmOptimization: true
})
Response:
{
"cluster_id": "cluster_xyz789",
"name": "large-model-cluster",
"status": "initializing",
"topology": "mesh",
"max_nodes": 100,
"created_at": "2025-10-19T10:30:00Z"
}
Deploy Worker Nodes
// Deploy parameter server
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_xyz789",
node_type: "parameter_server",
model: "large",
template: "nodejs",
capabilities: ["parameter_management", "gradient_aggregation"],
autonomy: 0.8
})
// Deploy worker nodes
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_xyz789",
node_type: "worker",
model: "xl",
role: "worker",
capabilities: ["training", "inference"],
layers: [
{ type: "transformer_encoder", num_heads: 16 },
{ type: "feed_forward", units: 4096 }
],
autonomy: 0.9
})
// Deploy aggregator
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_xyz789",
node_type: "aggregator",
model: "large",
capabilities: ["gradient_aggregation", "model_synchronization"]
})
Connect Cluster Topology
mcp__flow-nexus__neural_cluster_connect({
cluster_id: "cluster_xyz789",
topology: "mesh" // Override default if needed
})
Start Distributed Training
mcp__flow-nexus__neural_train_distributed({
cluster_id: "cluster_xyz789",
dataset: "imagenet", // or custom dataset identifier
epochs: 100,
batch_size: 128,
learning_rate: 0.001,
optimizer: "adam", // sgd, rmsprop, adagrad
federated: true // Enable federated learning
})
Federated Learning Example:
mcp__flow-nexus__neural_train_distributed({
cluster_id: "cluster_xyz789",
dataset: "medical_images_distributed",
epochs: 200,
batch_size: 64,
learning_rate: 0.0001,
optimizer: "adam",
federated: true, // Data stays on local nodes
aggregation_rounds: 50,
min_nodes_per_round: 5
})
Monitor Cluster Status
mcp__flow-nexus__neural_cluster_status({
cluster_id: "cluster_xyz789"
})
Response:
{
"cluster_id": "cluster_xyz789",
"status": "training",
"nodes": [
{
"node_id": "node_001",
"type": "parameter_server",
"status": "active",
"cpu_usage": 0.75,
"memory_usage": 0.82
},
{
"node_id": "node_002",
"type": "worker",
"status": "active",
"training_progress": 0.45
}
],
"training_metrics": {
"current_epoch": 45,
"total_epochs": 100,
"loss": 0.234,
"accuracy": 0.891
}
}
Run Distributed Inference
mcp__flow-nexus__neural_predict_distributed({
cluster_id: "cluster_xyz789",
input_data: JSON.stringify([
[0.1, 0.2, 0.3],
[0.4, 0.5, 0.6]
]),
aggregation: "ensemble" // mean, majority, weighted, ensemble
})
Terminate Cluster
mcp__flow-nexus__neural_cluster_terminate({
cluster_id: "cluster_xyz789"
})
5. Model Management
List Your Models
mcp__flow-nexus__neural_list_models({
user_id: "your_user_id",
include_public: true
})
Response:
{
"models": [
{
"model_id": "model_abc123",
"name": "Custom Classifier v1",
"architecture": "feedforward",
"accuracy": 0.92,
"created_at": "2025-10-15T14:20:00Z",
"status": "trained"
},
{
"model_id": "model_def456",
"name": "LSTM Forecaster",
"architecture": "lstm",
"mse": 0.0045,
"created_at": "2025-10-18T09:15:00Z",
"status": "training"
}
]
}
Check Training Status
mcp__flow-nexus__neural_training_status({
job_id: "job_training_xyz"
})
Response:
{
"job_id": "job_training_xyz",
"status": "training",
"progress": 0.67,
"current_epoch": 67,
"total_epochs": 100,
"current_loss": 0.234,
"estimated_completion": "2025-10-19T12:45:00Z"
}
Performance Benchmarking
mcp__flow-nexus__neural_performance_benchmark({
model_id: "model_abc123",
benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
})
Response:
{
"model_id": "model_abc123",
"benchmarks": {
"inference_latency_ms": 12.5,
"throughput_qps": 8000,
"memory_usage_mb": 245,
"gpu_utilization": 0.78,
"accuracy": 0.92,
"f1_score": 0.89
},
"timestamp": "2025-10-19T11:00:00Z"
}
Create Validation Workflow
mcp__flow-nexus__neural_validation_workflow({
model_id: "model_abc123",
user_id: "your_user_id",
validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive
})
6. Publishing and Marketplace
Publish Model as Template
mcp__flow-nexus__neural_publish_template({
model_id: "model_abc123",
name: "High-Accuracy Sentiment Classifier",
description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy",
category: "nlp",
price: 0, // 0 for free, or credits amount
user_id: "your_user_id"
})
Rate a Template
mcp__flow-nexus__neural_rate_template({
template_id: "sentiment-analysis-v2",
rating: 5,
review: "Excellent model! Achieved 95% accuracy on my dataset.",
user_id: "your_user_id"
})
Common Use Cases
Image Classification with CNN
// Initialize cluster for large-scale image training
const cluster = await mcp__flow-nexus__neural_cluster_init({
name: "image-classification-cluster",
architecture: "cnn",
topology: "hierarchical",
wasmOptimization: true
})
// Deploy worker nodes
await mcp__flow-nexus__neural_node_deploy({
cluster_id: cluster.cluster_id,
node_type: "worker",
model: "large",
capabilities: ["training", "data_augmentation"]
})
// Start training
await mcp__flow-nexus__neural_train_distributed({
cluster_id: cluster.cluster_id,
dataset: "custom_images",
epochs: 100,
batch_size: 64,
learning_rate: 0.001,
optimizer: "adam"
})
NLP Sentiment Analysis
// Use pre-built template
const deployment = await mcp__flow-nexus__neural_deploy_template({
template_id: "sentiment-analysis-v2",
custom_config: {
training: {
epochs: 30,
batch_size: 16
}
}
})
// Run inference
const result = await mcp__flow-nexus__neural_predict({
model_id: deployment.model_id,
input: ["This product is amazing!", "Terrible experience."]
})
Time Series Forecasting
// Train LSTM model
const training = await mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "lstm",
layers: [
{ type: "lstm", units: 128, return_sequences: true },
{ type: "dropout", rate: 0.2 },
{ type: "lstm", units: 64 },
{ type: "dense", units: 1 }
]
},
training: {
epochs: 150,
batch_size: 64,
learning_rate: 0.01,
optimizer: "adam"
}
},
tier: "medium"
})
// Monitor progress
const status = await mcp__flow-nexus__neural_training_status({
job_id: training.job_id
})
Federated Learning for Privacy
// Initialize federated cluster
const cluster = await mcp__flow-nexus__neural_cluster_init({
name: "federated-medical-cluster",
architecture: "transformer",
topology: "mesh",
consensus: "proof-of-learning",
daaEnabled: true
})
// Deploy nodes across different locations
for (let i = 0; i < 5; i++) {
await mcp__flow-nexus__neural_node_deploy({
cluster_id: cluster.cluster_id,
node_type: "worker",
model: "large",
autonomy: 0.9
})
}
// Train with federated learning (data never leaves nodes)
await mcp__flow-nexus__neural_train_distributed({
cluster_id: cluster.cluster_id,
dataset: "medical_records_distributed",
epochs: 200,
federated: true,
aggregation_rounds: 100
})
Architecture Patterns
Feedforward Networks
Best for: Classification, regression, simple pattern recognition
{
type: "feedforward",
layers: [
{ type: "dense", units: 256, activation: "relu" },
{ type: "dropout", rate: 0.3 },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: 10, activation: "softmax" }
]
}
LSTM Networks
Best for: Time series, sequences, forecasting
{
type: "lstm",
layers: [
{ type: "lstm", units: 128, return_sequences: true },
{ type: "lstm", units: 64 },
{ type: "dense", units: 1 }
]
}
Transformers
Best for: NLP, attention mechanisms, large-scale text
{
type: "transformer",
layers: [
{ type: "embedding", vocab_size: 10000, embedding_dim: 512 },
{ type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
{ type: "global_average_pooling" },
{ type: "dense", units: 2, activation: "softmax" }
]
}
GANs
Best for: Generative tasks, image synthesis
{
type: "gan",
generator_layers: [...],
discriminator_layers: [...]
}
Autoencoders
Best for: Dimensionality reduction, anomaly detection
{
type: "autoencoder",
encoder_layers: [
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: 64, activation: "relu" }
],
decoder_layers: [
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: input_dim, activation: "sigmoid" }
]
}
Best Practices
- Start Small: Begin with
nanoorminitiers for experimentation - Use Templates: Leverage marketplace templates for common tasks
- Monitor Training: Check status regularly to catch issues early
- Benchmark Models: Always benchmark before production deployment
- Distributed Training: Use clusters for large models (>1B parameters)
- Federated Learning: Use for privacy-sensitive data
- Version Models: Publish successful models as templates for reuse
- Validate Thoroughly: Use validation workflows before deployment
Troubleshooting
Training Stalled
// Check cluster status
const status = await mcp__flow-nexus__neural_cluster_status({
cluster_id: "cluster_id"
})
// Terminate and restart if needed
await mcp__flow-nexus__neural_cluster_terminate({
cluster_id: "cluster_id"
})
Low Accuracy
- Increase epochs
- Adjust learning rate
- Add regularization (dropout)
- Try different optimizer
- Use data augmentation
Out of Memory
- Reduce batch size
- Use smaller model tier
- Enable gradient accumulation
- Use distributed training
Related Skills
flow-nexus-sandbox- E2B sandbox managementflow-nexus-swarm- AI swarm orchestrationflow-nexus-workflow- Workflow automation
Resources
- Flow Nexus Docs: https://flow-nexus.ruv.io/docs
- Neural Network Guide: https://flow-nexus.ruv.io/docs/neural
- Template Marketplace: https://flow-nexus.ruv.io/templates
- API Reference: https://flow-nexus.ruv.io/api
Note: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use npx flow-nexus@latest register.
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/flow-nexus-neuralCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
pytorch-fsdp
DesignThis Claude Skill provides expert guidance for PyTorch Fully Sharded Data Parallel (FSDP) training, helping developers implement distributed training solutions. It covers key features like parameter sharding, mixed precision, CPU offloading, and FSDP2 for large-scale model training. Use this skill when working with FSDP APIs, debugging distributed training code, or learning best practices for sharded data parallelism.
deepspeed
DesignThis skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.
when-optimizing-agent-learning-use-reasoningbank-intelligence
OtherThis skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.
flow-nexus-neural
OtherFlow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports custom architectures like feedforward, LSTM, GAN, and transformer networks, plus pre-built templates. Use this skill when you need to manage scalable, distributed machine learning training workflows directly from your Claude environment.
